|
|
Quantum correlation of a three-particle W-class state under quantum decoherence |
Xu Peng (许鹏), Wang Dong (王栋), Ye Liu (叶柳) |
School of Physics and Material Science, Anhui University, Hefei 230039, China |
|
|
Abstract We investigate the quantum characteristics of a three-particle W-class state and reveal the relationship between quantum discord and quantum entanglement under decoherence. We can also identify the state for which discord takes a maximal value for a given decoherence factor, and present a strong bound on quantum entanglement–quantum discord. In contrast, a striking result will be obtained that the quantum discord is not always stronger than the entanglement of formation in the case of decoherence. Furthermore, we also theoretically study the variation trend of the monogamy of quantum correlations for the three-particle W-class state under the phase flip channel, and find that the three-particle W-class state could transform from polygamous into monogamous, owing to the decoherence.
|
Received: 24 January 2013
Revised: 02 April 2013
Accepted manuscript online:
|
PACS:
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.67.-a
|
(Quantum information)
|
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11074002, 61275119, and 11247256), the Doctoral Science Foundation of the Ministry of Education of China (Grant No. 20103401110003), the Fund of the Education Department of Anhui Province for Outstanding Youth, China (Grant No. 2012SQRL023), the Doctor Scientific Research Fund of Anhui University, China (Grant No. 33190058), and the Personal Development Foundation of Anhui Province, China (Grant No. 2008Z018). |
Corresponding Authors:
Ye Liu
E-mail: yeliu@ahu.edu.cn
|
Cite this article:
Xu Peng (许鹏), Wang Dong (王栋), Ye Liu (叶柳) Quantum correlation of a three-particle W-class state under quantum decoherence 2013 Chin. Phys. B 22 100306
|
[1] |
Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
|
[2] |
Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
|
[3] |
Jozsa R, Linden N and Proc R 2003 Proc. R. Soc. Lond. A 459 2011
|
[4] |
Bennett C H, DiVincenzo D P, Fuchs C A, Mor T, Rains E, Shor P W, Smolin J A and Wootters W K 1999 Phys. Rev. A 59 1070
|
[5] |
Horodecki M, Horodecki P, Uorodecki R, Oppenheim J, Sen A, Sen U and Synak-Radtke B 2005 Phys. Rev. A 71 062307
|
[6] |
Niset J and Cerf N J 2006 Phys. Rev. A 74 052103
|
[7] |
Bennett C H, Bernstein H J, Popescu S and Schumacher B 1996 Phys. Rev. A 53 2046
|
[8] |
Hil Sl and Wootters W K 1997 Phys. Rev. Lett. 78 5022
|
[9] |
Bennett C H, DiVincenzo D P, Smolin J A and Wootters W K 1996 Phys. Rev. A 54 3824
|
[10] |
Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin J A and Wootters W K 1996 Phys. Rev. Lett. 76 722
|
[11] |
Wootters W K 1998 Phys. Rev. Lett. 80 2245
|
[12] |
Ferraro A, Aolita L, Cavalcanti D, Cucchietti F M and Acin A 2010 Phys. Rev. A 81 052318
|
[13] |
Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404
|
[14] |
Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
|
[15] |
Henderson L and Vedral V 2001 J. Phys. A: Math Gen. 34 6899
|
[16] |
Daki’c B, Vedral V and Brukner C 2010 Phys. Rev. Lett. 105 190502
|
[17] |
Luo S and Fu S 2010 Phys. Rev. A 82 034302
|
[18] |
Wei H R, Ren B C and Deng F G 2013 Quantum Inf. Process. 12 1109
|
[19] |
Luo S 2008 Phys. Rev. A 77 022301
|
[20] |
Luo S and Fu S 2011 Phys. Rev. Lett. 106 120401
|
[21] |
Wu S, Poulsen U V and Molmer K 2009 Phys. Rev. A 80 032319
|
[22] |
Datta A and Gharibian S 2009 Phys. Rev. A 79 042325
|
[23] |
Modi K, Paterek T, Son W, Vedral V and Williamson M 2010 Phys. Rev. Lett. 104 080501
|
[24] |
Werlang T and Rigolin G 2010 Phys. Rev. A 81 044101
|
[25] |
Ali M, Rau A R P and Alber G 2010 Phys. Rev. A 81 042105
|
[26] |
Ferraro A, Aolita L, Cavalcanti D, Cucchietti F M and Acin A 2010 Phys. Rev. A 81 052318
|
[27] |
Giorda P and Paris M G A 2010 Phys. Rev. Lett. 105 020503
|
[28] |
Adesso G and Datta A 2010 Phys. Rev. Lett. 105 030501
|
[29] |
Soares-Pinto D O, Celeri L, Auccaise R, Fanchini F, De Azevedo E, Maziero J, Bonagamba T and Serra R 2010 Phys. Rev. A 81 062118
|
[30] |
Madhok V and Datta A 2011 Phys. Rev. A 83 032323
|
[31] |
Bylicka B and Chruscinski D 2010 Phys. Rev. A 81 062102
|
[32] |
Werlang T, Souza S, Fanchini F F and Villas-Boas C J 2009 Phys. Rev. A 80 024103
|
[33] |
Lanyon B P, Barbieri M, Almeida M P and White A G 2008 Phys. Rev. Lett. 101 200501
|
[34] |
Datta A, Shaji A and Caves C M 2008 Phys. Rev. Lett. 100 050502
|
[35] |
Yu T and Eberly J H 2007 Quantum Inf. Comput. 7 459
|
[36] |
Seevinck M 2010 Quantum Inf. Process. 9 273
|
[37] |
Pawlowski M and Brukner C 2009 Phys. Rev. Lett. 102 030403
|
[38] |
Ou Y C and Fan H 2007 Phys. Rev. A 75 062308
|
[39] |
Ou Y C, Fan H and Fei S M 2008 Phys. Rev. A 78 012311
|
[40] |
Jiang F J, Lü H J, Yan X H and Shi M J 2013 Chin. Phys. B 22 040303
|
[41] |
Wang C and Chen Q H 2013 Chin. Phys. B 22 040304
|
[42] |
Wang X Y, Ding B F and Zhao H P 2013 Chin. Phys. B 22 040308
|
[43] |
Zhao B K and Deng F G 2010 Phys. Rev. A 82 014301
|
[44] |
Wooters W K 1998 Phys. Rev. Lett. 80 2245
|
[45] |
Preskill J 1998 Nature 391 http://www.theory.caltech.edu/people/preskill/nature_robust.pdf
|
[46] |
Salles A, de Melo F, Almeida M P, Hor-Meyll M, Walborn S P, Souto Ribeiro P H and Davidovich L 2008 Phys. Rev. A 78 022322
|
[47] |
Yu T and Ederly J H 2006 Phys. Rev. Lett. 97 140403
|
[48] |
Koashi M and Winter A 2004 Phys. Rev. A 69 022309
|
[49] |
Osborne T J and Verstraete F 2006 Phys. Rev. Lett. 96 220503
|
[50] |
Adesso G, Serafini A and Illuminati F 2006 Phys. Rev. A 73 032345
|
[51] |
Hiroshima T, Adesso G and Illuminati F 2007 Phys. Rev. Lett. 98 050503
|
[52] |
Seevinck M 2007 Phys. Rev. A 76 012106
|
[53] |
Lee S and Park J 2009 Phys. Rev. A 79 054309
|
[54] |
Kay A, Kaszlikowski D and Ramanathan R 2009 Phys. Rev. Lett. 103 050501
|
[55] |
Hayashi M and Chen L 2011 Phys. Rev. A 84 012325
|
[56] |
Greenberger D M, Horne M A, Shimony A and Zeilinger A 1989 Bell’s Theorem, Quantum Theory and Conceptions of the Universe, ed. Kafatos M (Dordrecht: Kluwer Academic)
|
[57] |
Dür W, Vidal G and Cirac J I 2000 Phys. Rev. A 62 062314
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|