Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 100306    DOI: 10.1088/1674-1056/22/10/100306
GENERAL Prev   Next  

Quantum correlation of a three-particle W-class state under quantum decoherence

Xu Peng (许鹏), Wang Dong (王栋), Ye Liu (叶柳)
School of Physics and Material Science, Anhui University, Hefei 230039, China
Abstract  We investigate the quantum characteristics of a three-particle W-class state and reveal the relationship between quantum discord and quantum entanglement under decoherence. We can also identify the state for which discord takes a maximal value for a given decoherence factor, and present a strong bound on quantum entanglement–quantum discord. In contrast, a striking result will be obtained that the quantum discord is not always stronger than the entanglement of formation in the case of decoherence. Furthermore, we also theoretically study the variation trend of the monogamy of quantum correlations for the three-particle W-class state under the phase flip channel, and find that the three-particle W-class state could transform from polygamous into monogamous, owing to the decoherence.
Keywords:  quantum correlations      quantum entanglement      quantum discord      W-class state  
Received:  24 January 2013      Revised:  02 April 2013      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.-a (Quantum information)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11074002, 61275119, and 11247256), the Doctoral Science Foundation of the Ministry of Education of China (Grant No. 20103401110003), the Fund of the Education Department of Anhui Province for Outstanding Youth, China (Grant No. 2012SQRL023), the Doctor Scientific Research Fund of Anhui University, China (Grant No. 33190058), and the Personal Development Foundation of Anhui Province, China (Grant No. 2008Z018).
Corresponding Authors:  Ye Liu     E-mail:  yeliu@ahu.edu.cn

Cite this article: 

Xu Peng (许鹏), Wang Dong (王栋), Ye Liu (叶柳) Quantum correlation of a three-particle W-class state under quantum decoherence 2013 Chin. Phys. B 22 100306

[1] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[2] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[3] Jozsa R, Linden N and Proc R 2003 Proc. R. Soc. Lond. A 459 2011
[4] Bennett C H, DiVincenzo D P, Fuchs C A, Mor T, Rains E, Shor P W, Smolin J A and Wootters W K 1999 Phys. Rev. A 59 1070
[5] Horodecki M, Horodecki P, Uorodecki R, Oppenheim J, Sen A, Sen U and Synak-Radtke B 2005 Phys. Rev. A 71 062307
[6] Niset J and Cerf N J 2006 Phys. Rev. A 74 052103
[7] Bennett C H, Bernstein H J, Popescu S and Schumacher B 1996 Phys. Rev. A 53 2046
[8] Hil Sl and Wootters W K 1997 Phys. Rev. Lett. 78 5022
[9] Bennett C H, DiVincenzo D P, Smolin J A and Wootters W K 1996 Phys. Rev. A 54 3824
[10] Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin J A and Wootters W K 1996 Phys. Rev. Lett. 76 722
[11] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[12] Ferraro A, Aolita L, Cavalcanti D, Cucchietti F M and Acin A 2010 Phys. Rev. A 81 052318
[13] Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404
[14] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[15] Henderson L and Vedral V 2001 J. Phys. A: Math Gen. 34 6899
[16] Daki’c B, Vedral V and Brukner C 2010 Phys. Rev. Lett. 105 190502
[17] Luo S and Fu S 2010 Phys. Rev. A 82 034302
[18] Wei H R, Ren B C and Deng F G 2013 Quantum Inf. Process. 12 1109
[19] Luo S 2008 Phys. Rev. A 77 022301
[20] Luo S and Fu S 2011 Phys. Rev. Lett. 106 120401
[21] Wu S, Poulsen U V and Molmer K 2009 Phys. Rev. A 80 032319
[22] Datta A and Gharibian S 2009 Phys. Rev. A 79 042325
[23] Modi K, Paterek T, Son W, Vedral V and Williamson M 2010 Phys. Rev. Lett. 104 080501
[24] Werlang T and Rigolin G 2010 Phys. Rev. A 81 044101
[25] Ali M, Rau A R P and Alber G 2010 Phys. Rev. A 81 042105
[26] Ferraro A, Aolita L, Cavalcanti D, Cucchietti F M and Acin A 2010 Phys. Rev. A 81 052318
[27] Giorda P and Paris M G A 2010 Phys. Rev. Lett. 105 020503
[28] Adesso G and Datta A 2010 Phys. Rev. Lett. 105 030501
[29] Soares-Pinto D O, Celeri L, Auccaise R, Fanchini F, De Azevedo E, Maziero J, Bonagamba T and Serra R 2010 Phys. Rev. A 81 062118
[30] Madhok V and Datta A 2011 Phys. Rev. A 83 032323
[31] Bylicka B and Chruscinski D 2010 Phys. Rev. A 81 062102
[32] Werlang T, Souza S, Fanchini F F and Villas-Boas C J 2009 Phys. Rev. A 80 024103
[33] Lanyon B P, Barbieri M, Almeida M P and White A G 2008 Phys. Rev. Lett. 101 200501
[34] Datta A, Shaji A and Caves C M 2008 Phys. Rev. Lett. 100 050502
[35] Yu T and Eberly J H 2007 Quantum Inf. Comput. 7 459
[36] Seevinck M 2010 Quantum Inf. Process. 9 273
[37] Pawlowski M and Brukner C 2009 Phys. Rev. Lett. 102 030403
[38] Ou Y C and Fan H 2007 Phys. Rev. A 75 062308
[39] Ou Y C, Fan H and Fei S M 2008 Phys. Rev. A 78 012311
[40] Jiang F J, Lü H J, Yan X H and Shi M J 2013 Chin. Phys. B 22 040303
[41] Wang C and Chen Q H 2013 Chin. Phys. B 22 040304
[42] Wang X Y, Ding B F and Zhao H P 2013 Chin. Phys. B 22 040308
[43] Zhao B K and Deng F G 2010 Phys. Rev. A 82 014301
[44] Wooters W K 1998 Phys. Rev. Lett. 80 2245
[45] Preskill J 1998 Nature 391 http://www.theory.caltech.edu/people/preskill/nature_robust.pdf
[46] Salles A, de Melo F, Almeida M P, Hor-Meyll M, Walborn S P, Souto Ribeiro P H and Davidovich L 2008 Phys. Rev. A 78 022322
[47] Yu T and Ederly J H 2006 Phys. Rev. Lett. 97 140403
[48] Koashi M and Winter A 2004 Phys. Rev. A 69 022309
[49] Osborne T J and Verstraete F 2006 Phys. Rev. Lett. 96 220503
[50] Adesso G, Serafini A and Illuminati F 2006 Phys. Rev. A 73 032345
[51] Hiroshima T, Adesso G and Illuminati F 2007 Phys. Rev. Lett. 98 050503
[52] Seevinck M 2007 Phys. Rev. A 76 012106
[53] Lee S and Park J 2009 Phys. Rev. A 79 054309
[54] Kay A, Kaszlikowski D and Ramanathan R 2009 Phys. Rev. Lett. 103 050501
[55] Hayashi M and Chen L 2011 Phys. Rev. A 84 012325
[56] Greenberger D M, Horne M A, Shimony A and Zeilinger A 1989 Bell’s Theorem, Quantum Theory and Conceptions of the Universe, ed. Kafatos M (Dordrecht: Kluwer Academic)
[57] Dür W, Vidal G and Cirac J I 2000 Phys. Rev. A 62 062314
[1] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[2] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[3] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[4] Protecting geometric quantum discord via partially collapsing measurements of two qubits in multiple bosonic reservoirs
Xue-Yun Bai(白雪云) and Su-Ying Zhang(张素英). Chin. Phys. B, 2022, 31(4): 040308.
[5] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[6] Quantum steerability of two qubits mediated by one-dimensional plasmonic waveguides
Ye-Qi Zhang(张业奇), Xiao-Ting Ding(丁潇婷), Jiao Sun(孙娇), and Tian-Hu Wang(王天虎). Chin. Phys. B, 2022, 31(12): 120305.
[7] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[8] Effects of initial states on the quantum correlations in the generalized Grover search algorithm
Zhen-Yu Chen(陈祯羽), Tian-Hui Qiu(邱田会), Wen-Bin Zhang(张文彬), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2021, 30(8): 080303.
[9] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[10] Entanglement properties of GHZ and W superposition state and its decayed states
Xin-Feng Jin(金鑫锋), Li-Zhen Jiang(蒋丽珍), and Xiao-Yu Chen(陈小余). Chin. Phys. B, 2021, 30(6): 060301.
[11] Controlling the entropic uncertainty and quantum discord in two two-level systems by an ancilla in dissipative environments
Rong-Yu Wu(伍容玉) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(3): 037302.
[12] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
[13] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[14] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
[15] Quantifying non-classical correlations under thermal effects in a double cavity optomechanical system
Mohamed Amazioug, Larbi Jebli, Mostafa Nassik, Nabil Habiballah. Chin. Phys. B, 2020, 29(2): 020304.
No Suggested Reading articles found!