Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(9): 096103    DOI: 10.1088/1674-1056/22/9/096103
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Large energy-loss straggling of swift heavy ions in ultra-thin active silicon layers

Zhang Zhan-Gang (张战刚)a b, Liu Jie (刘杰)a, Hou Ming-Dong (侯明东)a, Sun You-Mei (孙友梅)a, Zhao Fa-Zhan (赵发展)c, Liu Gang (刘刚)c, Han Zheng-Sheng (韩郑生)c, Geng Chao (耿超)a b, Liu Jian-De (刘建德)a, Xi Kai (习凯)a b, Duan Jing-Lai (段敬来)a, Yao Hui-Jun (姚会军)a, Mo Dan (莫丹)a, Luo Jie (罗捷)a b, Gu Song (古松)a b, Liu Tian-Qi (刘天奇)a b
a Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
b University of Chinese Academy of Sciences, Beijing 100049, China;
c Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
Abstract  Monte Carlo simulations reveal considerable straggling of energy loss by the same ions with the same energy in fully-depleted silicon-on-insulator (FDSOI) devices with ultra-thin sensitive silicon layers down to 2.5 nm. The absolute straggling of deposited energy decreases with decreasing thickness of the active silicon layer. While the relative straggling increases gradually with decreasing thickness of silicon films and exhibits a sharp rise as the thickness of the silicon film descends below a threshold value of 50 nm, with the dispersion of deposited energy ascending above±10%. Ion species and energy dependence of the energy-loss straggling are also investigated. For a given beam, the dispersion of deposited energy results in large uncertainty on the actual linear energy transfer (LET) of incident ions, and thus single event effect (SEE) responses, which pose great challenges for traditional error rate prediction methods.
Keywords:  single event effects      energy-loss straggling      ultra-thin silicon layer      Monte Carlo simulation  
Received:  16 January 2013      Revised:  03 April 2013      Accepted manuscript online: 
PACS:  61.82.Fk (Semiconductors)  
  02.50.Ng (Distribution theory and Monte Carlo studies)  
  61.80.Jh (Ion radiation effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11179003 and 10975164).
Corresponding Authors:  Zhang Zhan-Gang, Liu Jie     E-mail:  zhangang@impcas.ac.cn; j.liu@impcas.ac.cn

Cite this article: 

Zhang Zhan-Gang (张战刚), Liu Jie (刘杰), Hou Ming-Dong (侯明东), Sun You-Mei (孙友梅), Zhao Fa-Zhan (赵发展), Liu Gang (刘刚), Han Zheng-Sheng (韩郑生), Geng Chao (耿超), Liu Jian-De (刘建德), Xi Kai (习凯), Duan Jing-Lai (段敬来), Yao Hui-Jun (姚会军), Mo Dan (莫丹), Luo Jie (罗捷), Gu Song (古松), Liu Tian-Qi (刘天奇) Large energy-loss straggling of swift heavy ions in ultra-thin active silicon layers 2013 Chin. Phys. B 22 096103

[1] Liu Z, Chen S M, Chen J J, Qin J R and Liu R R 2012 Chin. Phys. B 21 099401
[2] Zhang Q X, Hou M D, Liu J, Wang Z G, Jin Y F, Zhu Z Y and Sun Y M 2004 Acta Phys. Sin. 53 566 (in Chinese)
[3] Chen J J, Chen S M, Liang B and Deng K F 2012 Chin. Phys. B 21 016103
[4] Bichsel H 1988 Rev. Mod. Phys. 60 663
[5] Bichsel H 1990 Nucl. Instrum. Meth. Phys. Res. B 52 136
[6] Xapsos M A, Weatherford T R and Shapiro P 1993 IEEE Trans. Nucl. Sci. 40 1812
[7] Xapsos M A, Summers G P, Burke E A and Poivey C 2001 Nucl. Instrum. Meth. Phys. Res. B 184 113
[8] Barak J and Akkerman A 2005 IEEE Trans. Nucl. Sci. 52 2175
[9] Weller R A, Sternberg A L, Massengill L W, Schrimpf R D and Fleetwood D M 2003 IEEE Trans. Nucl. Sci. 50 2265
[10] Raine M, Gaillardin M, Paillet P, Duhamel O, Girard S and Bournel A 2011 IEEE Trans. Nucl. Sci. 58 2664
[11] Cheng K, Khakifirooz A, Kulkarni P, et al. 2011 Symposium on VLSI Technology, June 14-16, 2011 Kyoto, Japan, p.128
[12] Barral V, Poiroux T, Andrieu F, Buj-Dufournet C, Faynot O, Ernst T, Brevard L, Fenouillet-Beranger C, Lafond D, Hartmann J M, Vidal V, Allain F, Daval N, Cayrefourcq I, Tosti L, Munteanu D, Autran J L and Deleonibus S 2007 IEEE International Electron Devices Meeting, December 10-12, 2007 Washington, DC, USA, p. 61
[13] Majumdar A, Wang X L, Kumar A, Holt J R, Dobuzinsky D, Venigalla R, Ouyang C, Koester S J and Haensch W 2009 IEEE Electron Dev. Lett. 30 413
[14] Monfra S, Fenouillet-Beranger C, Bidal G, Boeuf F, Denorme S, Huguenin J L, Samson M P, Loubet N, Hartmann J M, Campidelli Y, Destefanis V, Arvet C, Benotmane K, Clement L, Faynot O and Skotnicki T 2010 Solid-State Electron. 54 90
[15] Fenouillet-Beranger C, Denorme S, Perreau P, et al. 2009 Solid-State Electron. 53 730
[16] Majumdar A, Ren Z B, Koester S J and Haensch W 2009 IEEE Trans. Electron Dev. 56 2270
[17] Shin C, Cho M H, Tsukamoto Y, Nguyen B Y, Mazure C, Nikolic B and Liu T J K 2010 IEEE Trans. Electron Dev. 57 1301
[18] Morvan S, Andrieu F, Casse M, et al. 2012 Symposium on VLSI Technology, June 12-14, 2012 Honolulu, Hawaii, USA, p. 111
[19] Andrieu F, Faynot O, Rochette F, et al. 2007 Symposium on VLSI Technology, June 12-14, 2007 Kyoto, Japan, p. 50
[20] Majumdar A, Ren Z B, Sleight J W, Dobuzinsky D, Holt J R, Venigalla R, Koester S J and Haensch W 2008 IEEE Electron Dev. Lett. 29 515
[21] Fudan University, Tsinghua University and Peking University 1985 Nuclear Physics Experimental Methods (Part I) (2nd edn.) (Beijing: Atomic Energy Press) p. 58 (in Chinese)
[22] Ziegler J F, Biersack J P and Littmark U 1985 The Stopping and Range of Ions in Solids (New York: Pergamon Press)
[23] http://www.srim.org/
[24] Pavlovic M and Strasik I 2007 Nucl. Instrum. Meth. Phys. Res. B 257 601
[25] Javanainen A, Trzaska W H, Harboe-Sorensen R, Virtanen A, Berger G and Hajdas W 2010 IEEE Trans. Nucl. Sci. 57 1946
[26] Fudan University, Tsinghua University and Peking University 1985 Nuclear Physics Experimental Methods (Part I) (2nd edn.) (Beijing: Atomic Energy Press) p. 49 (in Chinese)
[27] Liu M S, Liu H Y, Brewster N, Nelson D, Golke K W, Kirchner G, Hughes H L, Campbell A and Ziegler J F 2006 IEEE Trans. Nucl. Sci. 53 3487
[28] Agostinelli S, Allison J, Amako K,et al. 2003 Nucl. Instrum. Meth. Phys. Res. A 506 250
[29] Allison J, Amako K, Apostolakis J, et al. 2006 IEEE Trans. Nucl. Sci. 53 270
[30] http://geant4.cern.ch/
[31] 1996 EIA/JESD57: Test Procedure for the Measurement of Single-event Effects in Semiconductor Devices from Heavy Ion Irradiation
[32] 2002 ESA/SCC Basic Specification No. 25100: Single Event Effects Test Method and Guidelines
[33] https://creme.isde.vanderbilt.edu/
[34] Reed R A, Weller R A, Mendenhall M H, Lauenstein J M, Warren K M, Pellish J A, Schrimpf R D, Sierawski B D, Massengill L W, Dodd P E, Shaneyfelt M R, Felix J A, Schwank J R, Haddad N F, Lawrence R K, Bowman J H and Conde R 2007 IEEE Trans. Nucl. Sci. 54 2312
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[3] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[4] Zero-field skyrmions in FeGe thin films stabilized through attaching a perpendicularly magnetized single-domain Ni layer
Zi-Bo Zhang(张子博) and Yong Hu(胡勇). Chin. Phys. B, 2021, 30(7): 077503.
[5] Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms
Shang-Yu Zhai(翟尚宇) and Jin-Hui Wu(吴金辉). Chin. Phys. B, 2021, 30(7): 074206.
[6] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[7] Correlated insulating phases in the twisted bilayer graphene
Yuan-Da Liao(廖元达), Xiao-Yan Xu(许霄琰), Zi-Yang Meng(孟子杨), and Jian Kang(康健). Chin. Phys. B, 2021, 30(1): 017305.
[8] Magnetic properties of La2CuMnO6 double perovskite ceramic investigated by Monte Carlo simulations
S Mtougui, I EL Housni, N EL Mekkaoui, S Ziti, S Idrissi, H Labrim, R Khalladi, L Bahmad. Chin. Phys. B, 2020, 29(5): 056101.
[9] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[10] Two types of highly efficient electrostatic traps for single loading or multi-loading of polar molecules
Bin Wei(魏斌), Hengjiao Guo(郭恒娇), Yabing Ji(纪亚兵), Shunyong Hou(侯顺永), Jianping Yin(印建平). Chin. Phys. B, 2020, 29(4): 043701.
[11] Phase transition of DNA compaction in confined space: Effects of macromolecular crowding are dominant
Erkun Chen(陈尔坤), Yangtao Fan(范洋涛), Guangju Zhao(赵光菊), Zongliang Mao(毛宗良), Haiping Zhou(周海平), Yanhui Liu(刘艳辉). Chin. Phys. B, 2020, 29(1): 018701.
[12] Variational and diffusion Monte Carlo simulations of a hydrogen molecular ion in a spherical box
Xuehui Xiao(肖学会), Kuo Bao(包括), Youchun Wang(王友春), Hui Xie(谢慧), Defang Duan(段德芳), Fubo Tian(田夫波), Tian Cui(崔田). Chin. Phys. B, 2019, 28(5): 056401.
[13] Computational study of inverse ferrite spinels
A EL Maazouzi, R Masrour, A Jabar, M Hamedoun. Chin. Phys. B, 2019, 28(5): 057504.
[14] Phase diagrams and magnetic properties of the mixed spin-1 and spin-3/2 Ising ferromagnetic thin film:Monte Carlo treatment
B Boughazi, M Boughrara, M Kerouad. Chin. Phys. B, 2019, 28(2): 027501.
[15] Effect of particle size distribution on magnetic behavior of nanoparticles with uniaxial anisotropy
S Rizwan Ali, Farah Naz, Humaira Akber, M Naeem, S Imran Ali, S Abdul Basit, M Sarim, Sadaf Qaseem. Chin. Phys. B, 2018, 27(9): 097503.
No Suggested Reading articles found!