|
|
High resolution photoassociation spectra of an ultracold Cs2 long-range 0u+ (6S1/2+6P1/2) state |
Chen Peng (陈鹏), Li Yu-Qing (李玉清), Zhang Yi-Chi (张一驰), Wu Ji-Zhou (武寄洲), Ma Jie (马杰), Xiao Lian-Tuan (肖连团), Jia Suo-Tang (贾锁堂) |
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Laser Spectroscopy Laboratory, Shanxi University, Taiyuan 030006, China |
|
|
Abstract In this paper, ultracold cesium molecules are formed through photoassociation technology, which is carried out in a magneto-optical trap. High resolution photoassociaion spectra with the rotational progressions up to J=7 are obtained. Three rovibrational levels of the long-range 0u+ state of Cs2 below the (6S1/2+6P1/2) dissociation limit are specifically investigated. By fitting their binding energy intervals to the non-rigid rotational model, the rotational constant of the long-range 0u+ state is determined. A proportional dependence of the value of the rotational constant on the vibrational quantum number is demonstrated.
|
Received: 25 March 2013
Revised: 30 May 2013
Accepted manuscript online:
|
PACS:
|
33.20.Vq
|
(Vibration-rotation analysis)
|
|
33.15.Pw
|
(Fine and hyperfine structure)
|
|
31.10.+z
|
(Theory of electronic structure, electronic transitions, and chemical binding)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB921603), the National High Technology Research and Development Program of China (Grant No. 2011AA010801), the National Natural Science Foundation of China (Grant Nos. 61008012 and 10934004), the International Science and Technology Cooperation Program of China (Grant No. 2001DFA12490), the Project for Excellent Research Team of the National Natural Science Foundation of China (Grant No. 61121064), and the New Teacher Fund of the Ministry of Education of China (Grant No. 20101401120004). |
Corresponding Authors:
Ma Jie
E-mail: mj@sxu.edu.cn
|
Cite this article:
Chen Peng (陈鹏), Li Yu-Qing (李玉清), Zhang Yi-Chi (张一驰), Wu Ji-Zhou (武寄洲), Ma Jie (马杰), Xiao Lian-Tuan (肖连团), Jia Suo-Tang (贾锁堂) High resolution photoassociation spectra of an ultracold Cs2 long-range 0u+ (6S1/2+6P1/2) state 2013 Chin. Phys. B 22 093301
|
[1] |
Dong G J, Edvadsson S, Lu W P and Barker P F 2005 Phys. Rev. A 72 R031605
|
[2] |
Gordon R J, Zhu L C, Schroeder W A and Seideman T 2003 J. Appl. Phys. 94 669
|
[3] |
Ma J, Wang L R, Zhao Y T, Xiao L T and Jia S T 2009 J. Mol. Spectrosc. 255 106
|
[4] |
Krems R V 2005 Int. Rev. Phys. Chem. 24 99
|
[5] |
DeMille D, Sainis S, Sage J, Bergeman T, Kotochigova S and Tiesinga E 2008 Phys. Rev. Lett. 100 043202
|
[6] |
Yelin S F, Kirby K and Côté R 2006 Phys. Rev. A 74 050301
|
[7] |
Shuman E S, Barry J F and DeMille D 2010 Nature 467 820
|
[8] |
Weinstein J D, DeCarvalho R, Guillet T, Friedrich B and Doyle J M 1998 Nature 395 148
|
[9] |
Buuren L D, Sommer C, Motsch M, Pohle S, Schenk M, Bayerl J, Pinkse P W H and Rempe G 2009 Phys. Rev. Lett. 102 033001
|
[10] |
Meerakker S Y, Smeets P H, Vanhaecke N, Jongma R T and Meijer G 2005 Phys. Rev. Lett. 94 023004
|
[11] |
Van Veldhoven J, Bethlem H L and Meijer G 2005 Phys. Rev. Lett. 94 083001
|
[12] |
Sawyer B C, Stuhl B K, Wang D, Yeo M and Ye J 2008 Phys. Rev. Lett. 101 203203
|
[13] |
Fulton R, Bishop A I, Shneider M N and Barker P F 2006 Nat. Phys. 2 465
|
[14] |
Dong G J, Lu W P and Barker P F 2004 Phys. Rev. A 69 013409
|
[15] |
Dong G J, Lu W P, Barker P F and Shneider M N 2005 Progress in Quantum Electronics 29 1
|
[16] |
Dong G J, Wang C and Zhang W P 2012 arxiv: 1205 1876
|
[17] |
Lin F, Zhang W, Zhao Z Y and Cong S L 2012 Chin. Phys. B 21 073203
|
[18] |
Li L, Niu Y Y, Yuan K J and Cong S L 2007 Chin. Phys. 16 2957
|
[19] |
Carr L D, DeMille D, Krems R V and Ye J 2009 New J. Phys. 11 055049
|
[20] |
Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225
|
[21] |
Jones K M, Tiesinga E, Lett P D and Julienne P S 2006 Rev. Mod. Phys. 78 483
|
[22] |
Dulieu O and Gabbanini C 2009 Rep. Prog. Phys. 72 086401
|
[23] |
Viteau M, Chotia A, Allegrini M, Bouloufa N, Dulieu O, Comparat D and Pillet P 2008 Science 321 232
|
[24] |
Zhang Yi C, Wu J Z, M J, Zh Y T, W L R, X L T and J S T 2010 Acta Phys. Sin. 59 5418 (in Chinese)
|
[25] |
Sage J M, Sainis S, Bergeman T and DeMille D 2005 Phys. Rev. Lett. 94 203001
|
[26] |
Yang Y, Ji Z H, Yuan J P, Wang L R, Zhao Y T, Ma J, Xiao L T and Jia S T 2012 Acta Phys. Sin. 61 213301 (in Chinese)
|
[27] |
Jones K M, Tiesinga E, Lett P D and Julienne P S 2006 Rev. Mod. Phys. 78 483
|
[28] |
Ma J, Wang L R, Zhao Y T, Xiao L T and Jia S T 2007 Appl. Phys. Lett. 91 161101
|
[29] |
Pichler M, Chen H and Stwalley W C 2004 J. Chem. Phys. 121 1796
|
[30] |
Pichler M, Chen H and Stwalley W C 2004 J. Chem. Phys. 121 6779
|
[31] |
Drag C, Tolra B L, Dulieu O, Comparat D, Vatasescu M, Boussen S, Guibal S, Crubellier A and Pillet P 2000 IEEE J. Quantum Electron. 36 1378
|
[32] |
Staanum P, Kraft S D, Lange J, Wester R and Weidemüller M 2006 Phys. Rev. Lett. 96 023201
|
[33] |
Zahzam N, Vogt T, Mudrich M, Comparat D and Pillet P 2006 Phys. Rev. Lett. 96 023202
|
[34] |
Fioretti A, Comparat D, Crubellier A, Dulieu O, Masnou-Seeuws F and Pillet P 1998 Phys. Rev. Lett. 80 4402
|
[35] |
Dion C M, Drag C, Dulieu O, Laburthe Tolra B, Masnou-Seeuws F and Pillet P 2001 Phys. Rev. Lett. 86 2253
|
[36] |
Chaudhury S, Merkel S, Herr T, Silberfarb A, Deutsch I H and Jessen P S 2007 Phys. Rev. Lett. 99 163002
|
[37] |
Ma J, Wang L R, Zhao Y T, Xiao L T and Jia S T 2009 J. Mol. Spectrosc. 255 106
|
[38] |
Wu J Z, Ma J, Ji Z H, Zhang Y C, Li Y Q, Wang L R, Zhao Y T, Chen G, Xiao L T and Jia S T 2012 Chin. Phys. B 21 093701
|
[39] |
Ma J, Wu J Z, Zhao Y T, Xiao L T and Jia S T 2010 Opt. Express 18 17089
|
[40] |
Ma J, Wang L R, Ji W B, Xiao L T and Jia S T 2007 Chin. Phys. Lett. 24 1904
|
[41] |
Wu J Z, Ma J, Zhang Y C, Li Y Q, Wang L R, Zhao Y T, Chen G, Xiao L T and Jia S T 2011 Phys. Chem. Chem. Phys. 13 18921
|
[42] |
Zhang H S, Ji Z H, Yuan J P, Zhao Y T, Ma J, Wang L R, Xiao L T and Jia S T 2011 Chin. Phys. B 20 123702
|
[43] |
Wester R, Kraft S D, Mudrich M, Staudt M, Lange J, Vanhaecke N, Dulieu O and Weidemüller M 2004 Appl. Phys. B 79 993
|
[44] |
Li Y Q, Ma J, Wu J Z, Zhang Y C, Zh Y T, W L R, Xiao L T and Jia S T 2012 Chin. Phys. B 21 043404
|
[45] |
Gomez E, Black A T, Turner L D, Tiesinga E and Lett P D 2007 Phys. Rev. A 75 013420
|
[46] |
Feng Z F, Li W D, Xiao L T and Jia S T 2009 Chin. Phys. B 18 4901
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|