|
|
Theoretical simulation of the photoassociation process for NaCs |
Zhang Chang-Zhe (张常哲), Zheng Bin (郑斌), Wang Jun (王军), Meng Qing-Tian (孟庆田) |
College of Physics and Electronics, Shandong Normal University, Jinan 250014, China |
|
|
Abstract We investigate the two-step association process of NaCs using the time-dependent wave packet method. Ground state atoms can be photoassociated to the low vibrational levels of the ground state for NaCs molecule by the two-step association. The time-dependent Schrödinger equation of the association process is solved within a three-state model and the wave packet is propagated with the "split operator-Fourier transform" scheme and the rotating-wave approximation (RWA). The vibrational population distribution of the ground state can be obtained by projecting the wave packet to every vibrational level of the ground state. The results not only show that for NaCs achievement of photoassociation production is accompanied by the photodissociation of the higher vibrational molecules, but also show that the vibrational distribution in lower vibrational levels of the ground state changes with the laser parameters.
|
Received: 07 July 2012
Revised: 03 August 2012
Accepted manuscript online:
|
PACS:
|
34.50.Rk
|
(Laser-modified scattering and reactions)
|
|
31.15.-p
|
(Calculations and mathematical techniques in atomic and molecular physics)
|
|
82.20.Bc
|
(State selected dynamics and product distribution)
|
|
82.30.Nr
|
(Association, addition, insertion, cluster formation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11074151) and the National Basic Research Program of China (Grant No. 2011CB808100). |
Corresponding Authors:
Meng Qing-Tian
E-mail: qtmeng@sdnu.ed.cn
|
Cite this article:
Zhang Chang-Zhe (张常哲), Zheng Bin (郑斌), Wang Jun (王军), Meng Qing-Tian (孟庆田) Theoretical simulation of the photoassociation process for NaCs 2013 Chin. Phys. B 22 023401
|
[1] |
Degenhardt C, Stoehr H, Sterr U and Riehle F 2004 Phys. Rev. A 70 023414
|
[2] |
Stapelfeldt H, Sakai H, Constant E and Corkum P B 1997 Phys. Rev. Lett. 79 2787
|
[3] |
Zhang L D, Wei J, Jiang Y Y, Fang L, Zhang S D, Guo W Y and Cai J Y 1998 Chin. Phys. 7 271
|
[4] |
Niu D W, Li H Y, Luo X L, Liang F, Cheng S and Li A L 2006 Chin. Phys. 15 1511
|
[5] |
Wickenhauser M, Tong X M, Arbó D G, Burgdörfer J and Lin C D 2006 Phys. Rev. A 74 041402
|
[6] |
Li G X, Huang G M and Peng J S 1998 Chin. Phys. 7 422
|
[7] |
Eramo R, Cavalier S, Fini L, Matera M and Dimauro L F 1997 J. Phys. B 30 3789
|
[8] |
Faucher O, Hertz E, Lavorel B, Chaux R, DreierT, Berger H and Charalambidis D 1999 J. Phys. B 32 4485
|
[9] |
Sage J M, Sainis S, Bergeman T and DeMille D 2005 Phys. Rev. Lett. 94 203001
|
[10] |
Fioretti A, Comparat D, Crubellier A, Dulieu O, Masnou-Seeuws F and Pillet P 1998 Phys. Rev. Lett. 80 4402
|
[11] |
Lin F, Zhang W, Zhao Z Y and Cong S L 2012 Chin. Phys. B 21 073203
|
[12] |
Zhang H S, Ji Z H, Yuan J P, Zhao Y T, Ma J, Wang L R, Xiao L T and Jia S T 2011 Chin. Phys. B 20 123702
|
[13] |
Marvet U and Dantus M 1995 Chem. Phys. Lett. 219 161
|
[14] |
Korolkov M V, Manz J, Paramonov G K and Schmidt B 1996 Chem. Phys. Lett. 260 604
|
[15] |
Nikolov A N, Ensher J R, Eyler E E, Wang H, Stwalley W C and Gould P L 1999 Phys. Rev. Lett. 84 246
|
[16] |
Haimberger C, Kleinert J, Bhattacharya M and Bigelow N P 2004 Phys. Rev. A 70 021402
|
[17] |
Mancini M W, Telles G D, Caires A R L, Bagnato V S and Marcassa L G 2004 Phys. Rev. Lett. 92 133203
|
[18] |
Kerman A J, Sage J M, Sainis S, Bergeman T and DeMille D 2004 Phys. Rev. Lett. 92 153001
|
[19] |
Wang D, Qi J, Stone M F, Nikolayeva O, Wang H, Hattaway B, Gensemer S D, Gould P L, Eyler E E and Stwalley W C 2004 Phys. Rev. Lett. 93 243005
|
[20] |
Zhang W, Wang G R and Cong S L 2011 Phys. Rev. A 83 045401
|
[21] |
Zhang W, Zhao Z Y, Xie T, Wang G R, Huang Y and Cong S L 2011 Phys. Rev. A 84 053418
|
[22] |
Meng Q T, Yang G H, Sun H L, Han K L and Lou N Q 2003 Phys. Rev. A 67 063202
|
[23] |
Yu J, Wang S M, Yuan K J and Cong S L 2006 Chin. Phys. 15 1996
|
[24] |
Wang J, Liu F, Yue D G, Zhao J, Xu Y, Meng Q T and Liu W K 2010 Chin. Phys. B 19 123301
|
[25] |
Lu R F, Zhang P Y and Han K L 2008 Phys. Rev. E 77 066701
|
[26] |
Meng Q T, Yang G H and Han K L 2003 Int. J. Quantum Chem. 95 30
|
[27] |
Igel-Mann G, Wedig U, Fuentealba P and Stoll H 1986 J. Chem. Phys. 84 5007
|
[28] |
Shaffer J P, Chalupczak W and Bigelow N P 1999 Phys. Rev. Lett. 82 1124
|
[29] |
Band Y B and Julienne P S 1995 Phys. Rev. A 51 R4317
|
[30] |
Haimberger C 2008 Photoassociation of Ultracold NaCs (Ph. D. thesis) University of Rochester, Rochester, New York
|
[31] |
Niu Y Y, Wang R, Liu L and Cong S L 2007 Chin. Phys. Lett. 24 3400
|
[32] |
Whaley K B and Light J C 1984 Phys. Rev. A 29 1188
|
[33] |
Aymar M and Dulieu O 2007 Mol. Phys. 105 1733
|
[34] |
Feit M D, Fleck J A and Steiger A 1982 J. Comput. Phys. 47 412
|
[35] |
Feuerstein B and Thumm U 2003 Phys. Rev. A 67 043405
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|