|
|
High-resolution photoassociation spectroscopy of ultracold Cs2 long-range 0g- state:The external well potential depth |
Liu Wen-Liang (刘文良), Wu Ji-Zhou (武寄洲), Ma Jie (马杰), Xiao Lian-Tuan (肖连团), Jia Suo-Tang (贾锁堂) |
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Laser Spectroscopy Laboratory, Shanxi University, Taiyuan 030006, China |
|
|
Abstract High-resolution photoassociation spectroscopy is reported using a modulation spectroscopy technology in a cesium atomic magneto-optical trap. The two lowest vibrational levels have been experimentally observed which have been theoretically predicted in [Phys. Rev. A 75 052501 (2007)]. A new potential curve is obtained by using the Rydberg–Klein–Ress method with a well depth of -82.384±0.026 cm-1, which is deeper than the result of previous experiment (-77.909 cm-1) and the theoretical prediction (-81.6445 cm-1).
|
Received: 17 June 2013
Revised: 28 August 2013
Accepted manuscript online:
|
PACS:
|
33.20.Vq
|
(Vibration-rotation analysis)
|
|
33.15.Pw
|
(Fine and hyperfine structure)
|
|
31.10.+z
|
(Theory of electronic structure, electronic transitions, and chemical binding)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB921603), the National High Technology Research and Development Program of China (Grant No. 2011AA010801), the National Natural Science Foundation of China (Grant Nos. 61008012 and 10934004), the International Science and Technology Corporation Program of China (Grant No. 2011DFA12490), the New Teacher Fund of the Ministry of Education of China (Grant No. 20101401120004), and the Natural Science Foundation of Shanxi Province, China (Grant No. 2013021005-1). |
Corresponding Authors:
Ma Jie
E-mail: mj@sxu.edu.cn
|
Cite this article:
Liu Wen-Liang (刘文良), Wu Ji-Zhou (武寄洲), Ma Jie (马杰), Xiao Lian-Tuan (肖连团), Jia Suo-Tang (贾锁堂) High-resolution photoassociation spectroscopy of ultracold Cs2 long-range 0g- state:The external well potential depth 2014 Chin. Phys. B 23 013301
|
[1] |
Krems R V 2005 Int. Rev. Phys. Chem. 24 99
|
[2] |
DeMille D 2002 Phys. Rev. Lett. 88 067901
|
[3] |
Dong G J, Edvadsson S, Lu W P and Barker P F 2005 Phys. Rev. A 72 031605
|
[4] |
Gordon R J, Zhu L C, Schroeder W A and Seideman T 2003 J. Appl. Phys. 94 669
|
[5] |
Jones K M, Iesinga E, Lett P D and Julienne P S 2006 Rev. Mod. Phys. 78 483
|
[6] |
Zhang H S, Ji Z H, Yuan J P, Zhao Y T, Ma J, Wang L R, Xiao L T and Jia S T 2011 Chin. Phys. B 20 123702
|
[7] |
Stwalley W C, Uang Y H and Pichler G 1978 Phys. Rev. Lett. 41 1164
|
[8] |
Ma J, Li Y Q, Wu J Z, Fan C Q, Feng H, Sun W G, Xiao L T and Jia S T 2013 Chin. Phys. B 22 073201
|
[9] |
Mosk A P, Reynolds M X W, Hijmans T W and Walraven J T M 1999 Phys. Rev. Lett. 82 307
|
[10] |
Ma J, Wang L R, Ji W B, Xiao L T and Jia S T 2007 Chin. Phys. Lett. 24 1904
|
[11] |
Wu J Z, Ma J, Zhong H J, Zhang Y C, Li Y Q, Wang L R, Xiao L T and Jia S T 2012 Chin. Phys. B 21 093701
|
[12] |
Li Y Q, Ma J, Wu J Z, Zhang Y C, Zhang Y T, Wang L R, Xiao L T and Jia S T 2012 Chin. Phys. B 21 043404
|
[13] |
Fioretti A, Comparat D, Drag C, Amiot C, Dulieu O, Masnou-Seeuws F and Pillet P 1999 Eur. Phys. J. D 5 389
|
[14] |
Manai I, Horchani R, Lignier H, Pillet P, Comparat D, Fioretti A and Allegrini M 2012 Phys. Rev. Lett. 109 183001
|
[15] |
Stwalley W C, Uang Y H and Pichler G 1978 Phys. Rev. Lett. 41 1164
|
[16] |
Lett P D, Helmerson K, Phillips W D, Ratliff L P, Rolston S L and Wagshul M E 1993 Phys. Rev. Lett. 71 2200
|
[17] |
Wu J Z, Ma J, Zhang Y C, Li Y Q, Wang L R, Zhao Y T, Chen G, Xiao L T and Jia S T 2011 Phys. Chem. Chem. Phys. 13 18921
|
[18] |
Pichler M, Chen H and Stwalley W C 2004 J. Chem. Phys. 121 1796
|
[19] |
Pichler M, Chen H and Stwalley W C 2004 J. Chem. Phys. 121 6779
|
[20] |
Ma J, Wang L R, Zhao Y T, Xiao L T and Jia S T 2007 Appl. Phys. Lett. 91 161101
|
[21] |
Gurian J H, Cheinet P, Huillery P, Fioretti A, Zhao J, Gould P L, Comparat D and Pillet P 2012 Phys. Rev. Lett. 108 023005
|
[22] |
Bouloufa N, Crubellier A and Dulieu O 2007 Phys. Rev. A 75 052501
|
[23] |
Monroe C, Swann W, Robinson H and Wieman C 1990 Phys. Rev. let. 65 1571
|
[24] |
Wang Y H, Yang H J, Zhang T C and Wang J M 2006 Acta Phys. Sin. 55 3403 (in Chinese)
|
[25] |
Comparat D, Drag C, Fioretti A, Dulieu O and Pillet P 1999 J. Mol. Spectrosc. 195 229
|
[26] |
Wu J Z, Ma J, Zhang Y C, Li Y Q, Wang L R, Zhao Y T, Chen G, Xiao L T and Jia S T 2011 Phys. Chem. Chem. Phys. 13 18921
|
[27] |
Leroy R J and Bernstein R B 1970 J. Chem. Phys. 52 3869
|
[28] |
Drag C, Tolra B L, Dulieu O, Comparat D, Vatasescu M, Boussen S, Guibal S, Crubellier A and Pillet P 2000 IEEE J. Quantum Electron. 36 1378
|
[29] |
Amiot C 1995 Chem. Phys. Lett. 241 133
|
[30] |
Dunham J L 1932 Phys. Rev. 41 721
|
[31] |
Gomez E, Black A T, Turner L D, Tiesinga E and Lett P D 2007 Phys. Rev. A 75 013420
|
[32] |
Hutson J M 1981 J. Phys. B 14 851
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|