Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(9): 093202    DOI: 10.1088/1674-1056/22/9/093202
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Method of accurately calculating mean field operator in multi-configuration time-dependent Hartree-Fock frame

Li Wen-Liang (李文亮), Zhang Ji (张季), Yao Hong-Bin (姚洪斌)
Xinjiang Institute of Engineering, Xinjiang 830091, China
Abstract  The accurate theoretical expressions of the mean field operator associated with the multi-configuration time-dependent Hartree-Fock (MCTDHF) method are presented in this paper. By using a theoretical formula, derived without approximation, we can study the multi-electron correlation dynamics accurately. Some illustrative calculations are carried out to check the accuracy of the expression of the mean field operator. The results of illustrative calculations indicate the reliability of the accurate expression of the mean field operator. This theoretical calculation method for the mean field operator may be of considerable help in future studies of the correlated dynamics of many-electron systems in strong laser fields.
Keywords:  strong laser field      multi-electron dynamics      mean field operator  
Received:  14 December 2012      Revised:  27 March 2013      Accepted manuscript online: 
PACS:  32.80.Rm (Multiphoton ionization and excitation to highly excited states)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
Fund: Project supported by the Scientific Research Program of the Higher Education Institution of Xinjiang, China (Grant No. XJEDU2012S41) and the National Natural Science Foundation of China (Grant No. 10974198).
Corresponding Authors:  Li Wen-Liang     E-mail:  wenliangli.dicp@gmail.com

Cite this article: 

Li Wen-Liang (李文亮), Zhang Ji (张季), Yao Hong-Bin (姚洪斌) Method of accurately calculating mean field operator in multi-configuration time-dependent Hartree-Fock frame 2013 Chin. Phys. B 22 093202

[1] Hu S L and Shi T Y 2013 Chin. Phys. B 22 013101
[2] Yu B H, Li Y B and Tang Q B 2013 Chin. Phys. B 22 013206
[3] Song Y D, Chen Z, Sun C K and Hu Z 2013 Chin. Phys. B 22 013302
[4] Jia X Y, Fan D H, Li W D and Chen J 2013 Chin. Phys. B 22 013303
[5] Guo F M, Chen G, Chen J G, Li S Y and Yang Y J 2013 Chin. Phys. B 22 023204
[6] Zanghellini J, Kitzler M, Fabian C, Brabec T and Scrinzi A 2003 Laser Phys. 13 1064
[7] Zanghellini J, Kitzler M, Brabec T and Scrnzi A 2004 J. Phys. B: At. Mol. Opt. Phys. 37 763
[8] Caillat J, Zhanghellini J, Kitzler M, Koch O, Kreuzer W and Scrinzi A 2005 Phys. Rev. A 71 012712
[9] Kato T and Kono H 2004 Chem. Phys. Lett. 392 533
[10] Kato T and Yamanouchi K 2009 J. Chem. Phys. 131 164118
[11] Nest M, Klamroth T and Saalfrank P 2005 J. Chem. Phys. 122 124102
[12] Nest M and Klamroth T 2005 Phys. Rev. A 72 012710
[13] Nest M 2007 J. Theor. Comput. Chem. 6 563
[14] Nest M 2009 J. Chem. Phys. 472 171
[15] Nest M, Padmanaban R and Saalfrank P 2007 J. Chem. Phys. 126 124106
[16] Haxton D J, Lawler K V and McCurdy C M 2011 Phys. Rev. A 83 063416
[17] Remacle F, Nest M and Levine R D 2007 Phys. Rev. Lett. 99 183902
[18] Nest M, Remacle F and Levine R D 2008 New J. Phys. 10 025019
[19] Meyer H D, Manthe U and Cederbaum L S 1990 Chem. Phys. Lett. 165 73
[20] Meyer H D, Manthe U and Cederbaum L S 1992 J. Chem. Phys. 97 3199
[21] Beck M H, Jackle A, Worth G A and Meyer H D 2000 Physics Reports 324 1
[22] Szabo A and Ostlund N S 1996 Modern Quantum Chemistry (New York: McGraw-Hill Inc.) Chapter 2
[23] Werner H J, Konwles P J, Amos R D, Berning A, Cooper D L, Deegan M, Dobbyn A J, Eckert F, Hampel C, Leininger T, Lindh R, Lloyd A W, Meyer W, Mura M E, Nickla A, Palmieri P, Peterson K, Pitzer R, Pulay P, Rauhut G, Schfltz M, Stoll H, Stone A J and Thoresteinsson T, MOLPRO A Package of ab initio Programs
[24] Schmidt M W, Baldridge K K, Boatz J A, Elbert S T, Gordon M S, Jensen J, Koseki S, Matsunaga N, Nguyen K, Su S, Windus T L, Dupuis M and Montgomery J A 1993 J. Comput. Chem. 14 1347
[25] Fernandez R, Lopez R, Aguado A, Ema I and Ramirez G 1998 J. Comput. Chem. 19 1284
[26] Fernandez R, Lopez R, Aguado A, Ema I and Ramirez G 2001 Int. J. Quantum Chem. 81 148
[27] Birkeland T, Nepstad R and F?rre M 2010 Phys. Rev. Lett. 104 163002
[28] Pindzola M S, Robicheaux F and Gavras P 1997 Phys. Rev. A 55 1307
[29] Grobe R and Eberly J H 1994 Phys. Rev. A 48 4664
[30] Hu S X, Collins L A and Schneider B I 2009 Phys. Rev. A 80 023426
[1] Creation and annihilation phenomena of electron and positron pairs in an oscillating field
M Jiang(江淼), D D Su(苏丹丹), N S Lin(林南省), and Y J Li(李英骏). Chin. Phys. B, 2021, 30(7): 070306.
[2] Efficient solver for time-dependent Schrödinger equation with interaction between atoms and strong laser field
Sheng-Peng Zhou(周胜鹏), Ai-Hua Liu(刘爱华), Fang Liu(刘芳), Chun-Cheng Wang(王春成), Da-Jun Ding(丁大军). Chin. Phys. B, 2019, 28(8): 083101.
[3] Effect of laser polarization on strong-field ionization and fragmentation of nitrous oxide molecules
Rui Wang(王瑞), Shi-Wen Zhang(张世文), Yang Liu(刘洋), Tian Sun(孙添), Hang Lv(吕航), Hai-Feng Xu(徐海峰). Chin. Phys. B, 2019, 28(5): 053301.
[4] Validity of extracting photoionization time delay from the first moment of streaking spectrogram
Chang-Li Wei(魏长立), Xi Zhao(赵曦). Chin. Phys. B, 2019, 28(1): 013201.
[5] Rydberg excitation of neutral nitric oxide molecules instrong UV and near-IR laser fields
Lv Hang (吕航), Zhang Jun-Feng (张军峰), Zuo Wan-Long (左万龙), Xu Hai-Feng (徐海峰), Jin Ming-Xing (金明星), Ding Da-Jun (丁大军). Chin. Phys. B, 2015, 24(6): 063303.
[6] Deflections of photoelectron classical trajectories in screened Coulomb potentials of H2+
Qin Bo-Ya (秦博雅), Wang Pei-Jie (王培杰), He Feng (何峰). Chin. Phys. B, 2015, 24(11): 114208.
No Suggested Reading articles found!