INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
The laser-intensity dependence of the photoassociation spectrum of the ultracold Cs2(6S1/2+6P1/2) 0u+ long-range molecular state |
Jin Li (金丽), Feng Guo-Sheng (冯国胜), Wu Ji-Zhou (武寄洲), Ma Jie (马杰), Wang Li-Rong (汪丽蓉), Xiao Lian-Tuan (肖连团), Jia Suo-Tang (贾锁堂) |
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Laser Spectroscopy Laboratory, Shanxi University, Taiyuan 030006, China |
|
|
Abstract The high-resolution photoassociation spectrum of the ultracold cesium molecular 0u+ state below the 6S1/2+6P1/2 limit is presented in this paper. The saturation of the photoassociation scattering probability is observed from the dependence of the trap-loss probability on the photoassociation laser intensity. The corresponding resonant line width is also demonstrated to increase linearly with increasing photoassociation laser intensity. Our experimental data have good consistency with the theoretical saturation model of Bohn and Julienne [Bohn J L and Julienne P S 1999 Phys. Rev. A 60 1].
|
Received: 22 November 2012
Revised: 10 January 2013
Accepted manuscript online:
|
PACS:
|
87.64.kv
|
(Fluorescence)
|
|
42.62.Fi
|
(Laser spectroscopy)
|
|
33.20.Vq
|
(Vibration-rotation analysis)
|
|
33.70.Jg
|
(Line and band widths, shapes, and shifts)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB921603), the 863 Program (Grant No. 2011AA010801), the National Natural Science Foundation of China (Grant Nos. 61008012, 10934004, 60978001, 60978018, and 11174187), the International Science & Technology Cooperation Program of China (Grant No. 2011DFA12490), the National Natural Science Foundation of China for Excellent Research Team (Grant No. 61121064), the Natural Science Foundation of Shanxi Province, China (Grant Nos. 2011011004 and 2011081030), and the New Teacher Fund of the Ministry of Education of China (Grant No. 20101401120004). |
Corresponding Authors:
Wang Li-Rong
E-mail: wlr@sxu.edu.cn
|
Cite this article:
Jin Li (金丽), Feng Guo-Sheng (冯国胜), Wu Ji-Zhou (武寄洲), Ma Jie (马杰), Wang Li-Rong (汪丽蓉), Xiao Lian-Tuan (肖连团), Jia Suo-Tang (贾锁堂) The laser-intensity dependence of the photoassociation spectrum of the ultracold Cs2(6S1/2+6P1/2) 0u+ long-range molecular state 2013 Chin. Phys. B 22 088701
|
[1] |
Thorsheim H R, Weiner J and Julienne P S 1987 Phys. Rev. Lett. 58 2420
|
[2] |
Miller J D, Cline R A and Heinzen D J 1993 Phys. Rev. Lett. 71 2204
|
[3] |
Zhang W, Xie T, Huang Y, Wang G R and Cong S L 2013 Chin. Phys. B 22 013301
|
[4] |
Wang L R, Ji Z H, Yuan J P, Yang Y, Zhao Y T, Ma J, Xiao L T and Jia S T 2012 Chin. Phys. B 21 113402
|
[5] |
Zhang H S, Ji Z H, Yuan J P, Zhao Y T, Ma J, Wang L R, Xiao L T and Jia S T 2011 Chin. Phys. B 20 123702
|
[6] |
Peter S, Stephan D K, Jorg L, Roland W and Matthias W 2006 Phys. Rev. Lett. 96 023201
|
[7] |
Li Y Q, Ma J, Wu J Z, Zhang Y C, Zhao Y T, Wang L R, Xiao L T and Jia S T 2012 Chin. Phys. B 21 043404
|
[8] |
Zhang Y C, Wu J Z, Li Y Q, Ma J, Wang L R, Zhao Y T, Xiao L T and Jia S T 2011 Chin. Phys. B 20 123701
|
[9] |
Ulmanis J, Deiglmayr J, Repp M, Wester R and Weidemüller M 2012 Chem. Rev. 112 4890
|
[10] |
McKenzie C, Denschlag J H, Haffner H, Browaeys A, Araujo E E, Fatemi F K, Jones K M, Simsarian J E, Choa D, Simonib A, Tiesinga E, Julienne P S, Helmerson K, Lett P D, Rolston S L and Phillips W D 2002 Phys. Rev. Lett. 88 120403
|
[11] |
Schloder U, Silber C, Deuschle T and Zimmermann C 2002 Phys. Rev. A 66 061403
|
[12] |
Prodan I D, Pichler M, Junker M, Hulet R G and Bohn J L 2003 Phys. Rev. Lett. 91 080402
|
[13] |
Kraft S D, Mudrich M, Staudt M U, Lange J, Dulieu O, Wester R and Weidemuller M 2005 Phys. Rev. A 71 013417
|
[14] |
Mickelson P G 2006 "Saturation Effects in Photoassociation Spectroscopy of 86Sr[D]", Rice University 2006
|
[15] |
Hansen D and Hemmerich A 2006 Phys. Rev. Lett. 96 073003
|
[16] |
Wang L R, Ma J, Ji W B, Wang G P, Xiao L T and Jia S T 2007 Laser Phys. 17 1171
|
[17] |
Ma J, Wang L R, Ji W B, Xiao L T and Jia S T 2007 Chin. Phys. Lett. 24 1904
|
[18] |
Bohn J L and Julienne P S 1999 Phys. Rev. A 60 414
|
[19] |
Napolitano R, Weiner J, Williams C J and Julienne P S 1994 Phys. Rev. Lett. 73 1352
|
[20] |
Ma J, Wang L R, Zhao Y T, Xiao L T and Jia S T 2009 J. Mol. Spectros. 255 106
|
[21] |
Pichler M, Chen H M and William C S 2004 J. Chem. Phys. 121 1796
|
[22] |
Bohn J L and Julienne P S 1996 Phys. Rev. A 54 4637
|
[23] |
Simoni A, Julienne P S, Tiesinga E and Williams C J 2002 Phys. Rev. A 66 063406
|
[24] |
Wu J Z, Ma J, Ji Z H, Zhang Y C, Li Y Q, Wang L R, Zhao Y T, Xiao L T and Jia S T 2012 Chin. Phys. B 21 093701
|
[25] |
Gomez E, Black A T, Turner L D, Tiesinga E and Lett P D 2007 Phys. Rev. A 75 013420
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|