|
|
Photoassociation of ultracold RbCs molecules into the (2)0- state (v=189,190) below the 5S1/2+6P1/2 dissociation limit |
Chang Xue-Fang (常雪芳), Ji Zhong-Hua (姬中华), Yuan Jin-Peng (元晋鹏), Zhao Yan-Ting (赵延霆), Yang Yong-Gang (杨勇刚), Xiao Lian-Tuan (肖连团), Jia Suo-Tang (贾锁堂) |
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Laser Spectroscopy Laboratory, Shanxi University, Taiyuan 030006, China |
|
|
Abstract Ultracold polar RbCs molecules are produced via photoassociation in a laser-cooled mixture of 85Rb and 133Cs atoms. The a3Σ+ state molecules which decay from electronically excited (2)0- state RbCs molecules are detected by resonance-enhanced two-photon ionization. The new rovibrational levels (v=189, 190) in the (2)0- state are also observed, which exist in theory and have not been observed in experiments yet. The corresponding rotational constants are measured by photoassociation spectroscopy, which are consistent with theoretical calculations using a nonrigid rotor model.
|
Received: 04 January 2013
Revised: 12 March 2013
Accepted manuscript online:
|
PACS:
|
37.10.-x
|
(Atom, molecule, and ion cooling methods)
|
|
34.80.Gs
|
(Molecular excitation and ionization)
|
|
34.50.Ez
|
(Rotational and vibrational energy transfer)
|
|
33.20.Vq
|
(Vibration-rotation analysis)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB921603), the International Science & Technology Cooperation Program of China (Grant No. 2011DFA12490), the National Natural Science Foundation of China (Grant Nos. 61275209, 10934004, and 11004125), and the National Natural Science Foundation for Excellent Research Team, China (Grant No. 61121064). |
Corresponding Authors:
Zhao Yan-Ting
E-mail: zhaoyt@sxu.edu.cn
|
Cite this article:
Chang Xue-Fang (常雪芳), Ji Zhong-Hua (姬中华), Yuan Jin-Peng (元晋鹏), Zhao Yan-Ting (赵延霆), Yang Yong-Gang (杨勇刚), Xiao Lian-Tuan (肖连团), Jia Suo-Tang (贾锁堂) Photoassociation of ultracold RbCs molecules into the (2)0- state (v=189,190) below the 5S1/2+6P1/2 dissociation limit 2013 Chin. Phys. B 22 093701
|
[1] |
Ji Z H, Zhang H S, Wu J Z, Yuan J P, Yang Y G, Zhao Y T, Ma J, Wang L R, Xiao L T and Jia S T 2012 Phys. Rev. A 85 013401
|
[2] |
Swallows M D, Bishof M, Lin Y, Blatt S, Martin M J, Rey A M and Ye J 2011 Science 331 1043
|
[3] |
Rieger T, Junglen T, Rangwala S A, Pinkse P W H and Rempe G 2005 Phys. Rev. Lett. 95 173002
|
[4] |
Kuznetsova E, Bragdon T, Côté R and Yelin S F 2012 Phys. Rev. A 85 012328
|
[5] |
Thorsten K, Krzysztof G and Julienne P S 2006 Rev. Mod. Phys. 78 1311
|
[6] |
Jones K M, Tiesinga E, Lett P D and Julienne P S 2006 Rev. Mod. Phys. 78 483
|
[7] |
Li Y Q, Ma J, Wu J Z, Zhang Y C, Zhao Y T, Wang L R, Xiao L T and Jia S T 2012 Chin. Phys. B 21 043404
|
[8] |
Ji Z H, Zhang H S, Wu J Z, Yuan J P, Zhao Y T, Ma J, Wang L R, Xiao L T and Jia S T 2011 Chin. Phys. Lett. 28 083701
|
[9] |
Wang D, Qi J, Stone M F, Nikolayeva O, Wang H, Hattaway B, Gensemer S D, Gould P L, Eyler E E and Stwalley W C 2004 Phys. Rev. Lett. 93 243005
|
[10] |
Haimberger C, Kleinert J, Bhattacharya M and Bigelow N P 2004 Phys. Rev. A 70 021402
|
[11] |
Deiglmayr J, Grochola A, Repp M, Mörtlbauer K, Glück C, Lange J, Dulieu O, Wester R and Weidemüller M 2008 Phys. Rev. Lett. 101 133004
|
[12] |
Wang H and Stwalley W C 1998 J. Chem. Phys. 108 5767
|
[13] |
Pilch K, Lange A D, Prantner A, Kerner G, Ferlaino F, N? gerl H C and Grimm R 2009 Phys. Rev. A 79 042718
|
[14] |
Cho H W, McCarron D J, Jenkin D L, Köppinger M P and Cornish S L 2011 Eur. Phys. J. D 65 125
|
[15] |
Stwalley W C, Banerjee J, Belos M, Carollo R, Recore M and Mastroianni M 2010 J. Phys. Chem. A 114 81
|
[16] |
Londońo B E, Mahecha J E, Luc-Koenig E and Crubellier A 2009 Phys. Rev. A 80 032511
|
[17] |
Gabbanini C and Dulieu O 2011 Phys. Chem. Chem. Phys. 13 18905
|
[18] |
Wang L R, Ji Z H, Yuan J P, Yang Y, Zhao Y T, Ma J, Xiao L T and Jia S T 2012 Chin. Phys. B 21 113402
|
[19] |
Wang C C and Killinger D K 1979 Phys. Rev. A 20 1495
|
[20] |
Zhang H S, Ji Z H, Yuan J P, Zhao Y T, Ma J, Wang L R, Xiao L T and Jia S T 2011 Chin. Phys. B 20 123702
|
[21] |
Lysebo M and Veseth L 2008 Phys. Rev. A 77 032721
|
[22] |
Bergeman T, Fellows C E, Gutterres R F and Amiot C 2003 Phys. Rev. A 67 050501
|
[23] |
Docenko O, Tamanis M, Ferber R, Bergeman T, Kotochigova S, Stolyarov A V, Faria N A and Fellows C E 2010 Phys. Rev. A 81 042511
|
[24] |
Kerman A J, Sage J M Sainis S, Bergeman T and DeMille D 2004 Phys. Rev. Lett. 92 033004
|
[25] |
Ji Z H, Wu J Z, Zhang H S, Meng T F, Ma J, Wang L R, Zhao Y T, Xiao L T and Jia S T 2011 J. Phys. B 44 025202
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|