Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(8): 080505    DOI: 10.1088/1674-1056/22/8/080505
GENERAL Prev   Next  

Continuous-time chaotic systems:Arbitrary full-state hybrid projective synchronization via a scalar signal

Giuseppe Grassi
Dipartimento Ingegneria Innovazione, Universitá del Salento-73100 Lecce, Italy
Abstract  Referring to continuous-time chaotic systems, this paper presents a new projective synchronization scheme, which enables each drive system state to be synchronized with a linear combination of response system states for any arbitrary scaling matrix. The proposed method, based on a structural condition related to the uncontrollable eigenvalues of the error system, can be applied to a wide class of continuous-time chaotic (hyperchaotic) systems and represents a general framework that includes any type of synchronization defined to date. An example involving a hyperchaotic oscillator is reported, with the aim of showing how a response system attractor is arbitrarily shaped using a scalar synchronizing signal only. Finally, it is shown that the recently introduced dislocated synchronization can be readily achieved using the conceived scheme.
Keywords:  continuous-time chaotic systems      chaos synchronization      observer-based synchronization      scalar synchronizing signal  
Received:  04 December 2012      Revised:  12 January 2013      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
Corresponding Authors:  Giuseppe Grassi     E-mail:  giuseppe.grassi@unisalento.it

Cite this article: 

Giuseppe Grassi Continuous-time chaotic systems:Arbitrary full-state hybrid projective synchronization via a scalar signal 2013 Chin. Phys. B 22 080505

[1] Li Y and Liu Z R 2010 Chin. Phys. B 19 110501
[2] Carroll T L and Pecora L M 1991 IEEE Trans. Circ. Sys. 38 453
[3] Grassi G and Mascolo S 1999 IEEE Trans. Circ. Sys. I46 1135
[4] Grassi G and Mascolo S 1999 Int. J. Circ. Theory Appl. 27 543
[5] Grassi G and Mascolo S 1997 IEEE Trans. Circ. Sys. I44 1011
[6] Grassi G and S. Mascolo 1999 IEEE Trans. Circ. Sys. II46 478
[7] Grassi G and Mascolo S 1998 IEE Electron. Lett. 34 424
[8] Miller D A and Grassi G 2001 IEEE Trans. Circ. Sys. I48 366
[9] Brucoli, M, Carnimeo L and Grassi G 1996 Int. J. Bifur. Chaos 6 1673
[10] Brucoli, M, Carnimeo L and Grassi G 1996 Int. J. Circ. Theory Appl. 24 489
[11] Mainieri R and Rehacek J 1999 Phys. Rev. Lett. 82 3042
[12] Grassi G and Miller D A 2009 Chaos, Solitons & Fractals 39 1246
[13] Grassi G and Miller D A 2007 Int. J. Bifur. Chaos 17 1337
[14] Hu M, Xu Z, Zhang R and Hu A 2007 Phys. Lett. A 361 231
[15] Hu M, Xu Z and Zhang R 2008 Commun. Nonlinear Sci. Numer. Simul. 13 456
[16] Hu M, Xu Z and Zhang R 2008 Commun. Nonlinear Sci. Numer. Simul. 13 782
[17] Dai H, Jia L X, Hui M and Si G Q 2011 Chin. Phys. B 20 040507
[18] Grassi G 2012 Chin. Phys. B 21 060504
[19] Chu Y D, Chang Y X, An X L, Yu J N and Zhang J G 2011 Commun. Nonlinear Sci. Numer. Simul. 16 1509
[20] Tang W K S, Zhong G Q, Chen G and Man K F 2001 IEEE Trans. Circ. Sys. I48 1369
[21] Grassi G and Vecchio P 2007 Dynamics of Continuous, Discrete and Impulsive Systems B 14 705
[22] Grassi G and Grieco LA 2003 IEEE Trans. Circ. Sys. I50 488
[23] Guo L X, Xu Z Y and Hu M F 2008 Chin. Phys. B 17 4067
[1] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[2] Robust pre-specified time synchronization of chaotic systems by employing time-varying switching surfaces in the sliding mode control scheme
Alireza Khanzadeh, Mahdi Pourgholi. Chin. Phys. B, 2016, 25(8): 080501.
[3] Prescribed performance synchronization for fractional-order chaotic systems
Liu Heng (刘恒), Li Sheng-Gang (李生刚), Sun Ye-Guo (孙业国), Wang Hong-Xing (王宏兴). Chin. Phys. B, 2015, 24(9): 090505.
[4] Chaotic synchronization in Bose–Einstein condensate of moving optical lattices via linear coupling
Zhang Zhi-Ying (张志颖), Feng Xiu-Qin (冯秀琴), Yao Zhi-Hai (姚治海), Jia Hong-Yang (贾洪洋). Chin. Phys. B, 2015, 24(11): 110503.
[5] Finite-time sliding mode synchronization of chaotic systems
Ni Jun-Kang (倪骏康), Liu Chong-Xin (刘崇新), Liu Kai (刘凯), Liu Ling (刘凌). Chin. Phys. B, 2014, 23(10): 100504.
[6] Generalized projective synchronization of the fractional-order chaotic system using adaptive fuzzy sliding mode control
Wang Li-Ming (王立明), Tang Yong-Guang (唐永光), Chai Yong-Quan (柴永泉), Wu Feng (吴峰). Chin. Phys. B, 2014, 23(10): 100501.
[7] Chaos synchronization of a chain network based on a sliding mode control
Liu Shuang (柳爽), Chen Li-Qun (陈立群). Chin. Phys. B, 2013, 22(10): 100506.
[8] Arbitrary full-state hybrid projective synchronization for chaotic discrete-time systems via a scalar signal
Giuseppe Grassi . Chin. Phys. B, 2012, 21(6): 060504.
[9] Generalized synchronization between different chaotic maps via dead-beat control
Grassi G . Chin. Phys. B, 2012, 21(5): 050505.
[10] Design of an adaptive finite-time controller for synchronization of two identical/different non-autonomous chaotic flywheel governor systems
Mohammad Pourmahmood Aghababa . Chin. Phys. B, 2012, 21(3): 030502.
[11] Spatiotemporal chaos synchronization of an uncertain network based on sliding mode control
Lü Ling (吕翎), Yu Miao (于淼), Wei Lin-Ling (韦琳玲) , Zhang Meng(张檬), Li Yu-Shan (李雨珊). Chin. Phys. B, 2012, 21(10): 100507.
[12] A general method for synchronizing an integer-order chaotic system and a fractional-order chaotic system
Si Gang-Quan(司刚全), Sun Zhi-Yong(孙志勇), and Zhang Yan-Bin(张彦斌). Chin. Phys. B, 2011, 20(8): 080505.
[13] A novel robust proportional-integral (PI) adaptive observer design for chaos synchronization
Mahdi Pourgholi and Vahid Johari Majd . Chin. Phys. B, 2011, 20(12): 120503.
[14] Generalized chaos synchronization of a weighted complex network with different nodes
Lü Ling(吕翎), Li Gang(李钢), Guo Li(郭丽), Meng Le(孟乐),Zou Jia-Rui(邹家蕊), and Yang Ming(杨明). Chin. Phys. B, 2010, 19(8): 080507.
[15] Asymptotical p-moment stability of stochastic impulsive differential system and its application to chaos synchronization
Niu Yu-Jun(牛玉俊), Xu Wei(徐伟), and Lu Zhao-Yang(陆朝阳). Chin. Phys. B, 2010, 19(3): 030512.
No Suggested Reading articles found!