Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(8): 080504    DOI: 10.1088/1674-1056/22/8/080504
GENERAL Prev   Next  

Hopf bifurcation analysis and circuit implementation for a novel four-wing hyper-chaotic system

Xue Wei (薛薇)a, Qi Guo-Yuan (齐国元)b, Mu Jing-Jing (沐晶晶)a, Jia Hong-Yan (贾红艳)a, Guo Yan-Ling (郭彦岭)b
a Department of Automation, Tianjin University of Science & Technology, Tianjin 300222, China;
b F'SATI/Department of Electrical Engineering, Tshwane University of Technology, Pretoria 0001, South Africa
Abstract  In the paper, a novel four-wing hyper-chaotic system is proposed and analyzed. A rare dynamic phenomenon is found that this new system with one equilibrium generates a four-wing-hyper-chaotic attractor as parameter varies. The system has rich and complex dynamical behaviors, and it is investigated in terms of Lyapunov exponents, bifurcation diagrams, Poincaré maps, frequency spectrum, and numerical simulations. In addition, the theoretical analysis shows that the system undergoes a Hopf bifurcation as one parameter varies, which is illustrated by the numerical simulation. Finally, an analog circuit is designed to implement this hyper-chaotic system.
Keywords:  hyper-chaos      four-wing chaotic system      one equilibrium      Hopf bifurcation      circuit implementation  
Received:  12 November 2012      Revised:  16 January 2013      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10772135 and 60874028), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11202148), the Incentive Funding of the National Research Foundation of South Africa (Grant No. IFR2009090800049), the Eskom Tertiary Education Support Programme of South Africa, and the Research Foundation of Tianjin University of Science and Technology.
Corresponding Authors:  Xue Wei, Qi Guo-Yuan, Jia Hong-Yan     E-mail:  xuewei@tust.edu.cn; qig@tut.ac.za; jiahy@tust.edu.cn

Cite this article: 

Xue Wei (薛薇), Qi Guo-Yuan (齐国元), Mu Jing-Jing (沐晶晶), Jia Hong-Yan (贾红艳), Guo Yan-Ling (郭彦岭) Hopf bifurcation analysis and circuit implementation for a novel four-wing hyper-chaotic system 2013 Chin. Phys. B 22 080504

[1] Lorenz E N. 1963 J. Atmos. Sci. 20 130
[2] Rössler O E 1979 Phys. Lett. A 71 155
[3] Qi G Y, Chen G R, Du S Z, Chen Z Q and Yuan Z Z 2005 Phys. Lett. A 352 295
[4] Qi G Y and Chen G R 2008 Phys. Lett. A 409 423
[5] Chen G R and Ueta T 1999 Int. J. Bifurc. Chaos 9 1465
[6] Lü J H and Chen G R 2002 Int. J. Bifurc. Chaos 12 659
[7] Qi G Y, van Wyk B J and Wyk M A 2009 Chaos, Solitons and Fractals 40 2016
[8] Wang Z H, Qi G Y, Sun Y X, van Wyk B J and van Wyk M A 2010 Nonlinear Dyn. 60 443
[9] Wang F Z, Qi G Y, Chen Z Q and Yuan Z Z 2007 Acta Phys. Sin. 56 3137 (in Chinese)
[10] Chen Z Q, Yang Y and Yuan Z Z 2008 Chaos, Solitons and Fractals 38 1187
[11] Qi G Y, Chen G R, van Wyk M A, van Wyk B J and Zhang Y 2008 Chaos, Solitons and Fractals 38 705
[12] Jia H Y, Chen Z Q and Qi G Y 2011 Nonlinear Dyn. 65 131
[13] Jia H Y, Chen Z Q and Ye F 2011 Acta Phys. Sin. 60 010203 (in Chinese)
[14] Wang Z H, Qi G Y, Sun Y X, van Wyk M A, van Wyk B J and Zhang Y 2009 Int. J. Bifarc. Chaos 19 3841
[15] Wang J W and Chen A M 2010 Chin. Phys. Lett. 27 110501
[16] Zhang W and Liao S K 2009 J. Mech. Sci. Technol. 23 1058
[17] Li C L, Yu S M, Wei L L and Li Y S 2012 Chin. Phys B 21 100507
[18] Wu W J and Chen Z Q 2011 Nonlinear Dyn. 60 615
[19] Cang S J, Qi G Y and Chen Z Q 2010 Nonlinear Dyn. 59 515
[20] Wu W J, Chen Z Q and Yuan Z Z 2010 Int. J. Innov. Computing, Information & Control 6 307
[21] Jia H Y, Chen Z Q and Yuan Z Z 2010 Chin. Phys B 19 020507
[22] Dong E Z, Chen Z Q, Chen Z P and Ni J Y 2012 Chin. Phys B 21 030501
[23] Yu S M 2008 Acta Phys. Sin. 57 3374 (in Chinese)
[24] Qi G Y, van Wyk M A, van Wyk B J and Chen G R 2007 Phys. Lett. A 372 124
[25] Qi G Y, van Wyk M A, van Wyk B J and Zhang Y 2009 Chaos, Solitons and Fractals 40 2544
[26] Cang S J, Chen Z Q and Yuan Z Z 2008 Acta Phys. Sin. 57 1493 (in Chinese)
[27] Jia H Y, Chen Z Q and Yuan Z Z 2009 Acta Phys. Sin. 58 4496 (in Chinese)
[28] Xue W, Guo Y L and Chen Z Q 2009 Acta Phys. Sin. 58 8146 (in Chinese)
[29] Wang F Z, Qi G Y, Chen Z Q, Zhang Y H and Yuan Z Z 2006 Acta Phys. Sin. 55 4005 (in Chinese)
[30] Xue W, Mu J J and Jia H Y 2010 Proceedings of the Third Interational Workshop on Chaos-Fractal Theories and Applications, October 29-31, 2010, Kunming, China, p. 197
[31] Li N, Sun H Y and Zhang Q L 2012 Chin. Phys. B 21 010503
[32] Zhao H, Ma Y J, Liu S J, Gao S G and Zhong D 2011 Chin. Phys. B 20 120501
[33] Ri I, Feng Y L, Yao Z H and Fan J 2011 Chin. Phys B 20 120504
[34] Li Y, Zhang Z M and Tao Z J 2009 Acta Phys. Sin. 58 6818 (in Chinese)
[35] Bao H M and Zhu Y S 2009 Acta Electronica Sin. 37 1222
[36] Long, M and Peng F 2009 Acta Electronica Sin. 37 79
[37] Wang Z, Huang X, Li Y X and Song X N 2013 Chin. Phys B 22 010504
[38] Wiggins S 1990 Introduction to Applied Nonlinear Dynamical Systems and Chaos (New York: Springer-Verlag)
[1] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[2] The transition from conservative to dissipative flows in class-B laser model with fold-Hopf bifurcation and coexisting attractors
Yue Li(李月), Zengqiang Chen(陈增强), Mingfeng Yuan(袁明峰), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(6): 060503.
[3] Analysis and implementation of new fractional-order multi-scroll hidden attractors
Li Cui(崔力), Wen-Hui Luo(雒文辉), and Qing-Li Ou(欧青立). Chin. Phys. B, 2021, 30(2): 020501.
[4] Transition to chaos in lid-driven square cavity flow
Tao Wang(王涛) and Tiegang Liu(刘铁钢). Chin. Phys. B, 2021, 30(12): 120508.
[5] The second Hopf bifurcation in lid-driven square cavity
Tao Wang(王涛), Tiegang Liu(刘铁钢), Zheng Wang(王正). Chin. Phys. B, 2020, 29(3): 030503.
[6] Nonlinear dynamics in non-volatile locally-active memristor for periodic and chaotic oscillations
Wen-Yu Gu(谷文玉), Guang-Yi Wang(王光义), Yu-Jiao Dong(董玉姣), and Jia-Jie Ying(应佳捷). Chin. Phys. B, 2020, 29(11): 110503.
[7] Novel two-directional grid multi-scroll chaotic attractors based on the Jerk system
Peng-Fei Ding(丁鹏飞), Xiao-Yi Feng(冯晓毅)†, and Cheng-Mao Wu(吴成茂). Chin. Phys. B, 2020, 29(10): 108202.
[8] Hopf bifurcation control of a Pan-like chaotic system
Liang Zhang(张良), JiaShi Tang(唐驾时), Qin Han(韩芩). Chin. Phys. B, 2018, 27(9): 094702.
[9] Coexisting hidden attractors in a 4D segmented disc dynamo with one stable equilibrium or a line equilibrium
Jianghong Bao(鲍江宏), Dandan Chen(陈丹丹). Chin. Phys. B, 2017, 26(8): 080201.
[10] A novel methodology for constructing a multi-wing chaotic and hyperchaotic system with a unified step function switching control
Chao-Xia Zhang(张朝霞), Si-Min Yu(禹思敏). Chin. Phys. B, 2016, 25(5): 050503.
[11] Stability and Hopf bifurcation of a nonlinear electromechanical coupling system with time delay feedback
Liu Shuang (刘爽), Zhao Shuang-Shuang (赵双双), Wang Zhao-Long (王兆龙), Li Hai-Bin (李海滨). Chin. Phys. B, 2015, 24(1): 014501.
[12] Bifurcation and chaos analysis of a nonlinear electromechanical coupling relative rotation system
Liu Shuang (刘爽), Zhao Shuang-Shuang (赵双双), Sun Bao-Ping (孙宝平), Zhang Wen-Ming (张文明). Chin. Phys. B, 2014, 23(9): 094501.
[13] Nonlinear dynamic characteristics and optimal control of a giant magnetostrictive film-shaped memory alloy composite plate subjected to in-plane stochastic excitation
Zhu Zhi-Wen (竺致文), Zhang Qing-Xin (张庆昕), Xu Jia (许佳). Chin. Phys. B, 2014, 23(8): 088201.
[14] Hyper-chaos encryption using convolutional masking and model free unmasking
Qi Guo-Yuan (齐国元), Sandra Bazebo Matondo. Chin. Phys. B, 2014, 23(5): 050507.
[15] Synchronization transition of a coupled system composed of neurons with coexisting behaviors near a Hopf bifurcation
Jia Bing (贾冰). Chin. Phys. B, 2014, 23(5): 050510.
No Suggested Reading articles found!