Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(8): 080506    DOI: 10.1088/1674-1056/22/8/080506
GENERAL Prev   Next  

Studying the intermittent stable theorem and the synchronization of a delayed fractional nonlinear system

Hu Jian-Bing (胡建兵), Zhao Ling-Dong (赵灵冬), Xie Zheng-Guang (谢正光)
School of Electronics & Information, Nantong University, Nantong 226019, China
Abstract  In this paper, an intermittent synchronizing delayed fractional nonlinear system is studied. We propose a novel intermittent stable theorem for the delayed fractional system and derive a new synchronization criterion for delayed fractional systems by means of fractional stable theorem and the differential inequality method. Intermittent synchronizing fractional delayed Newton-Leipnik system is taken as an illustrative example and numerical simulation of this example is presented to show the feasibility and effectiveness of the proposed theorem.
Keywords:  fractional      delay      stability      intermittent synchronization  
Received:  25 December 2012      Revised:  13 May 2013      Accepted manuscript online: 
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
Fund: Project supported by Jiangsu Overseas Research & Training Program for University Prominent Young & Middle-aged Teachers and Presidents and the National Natural Science Foundation of China (Grant No. 61171077).
Corresponding Authors:  Zhao Ling-Dong     E-mail:  zhaolingdong@163.com

Cite this article: 

Hu Jian-Bing (胡建兵), Zhao Ling-Dong (赵灵冬), Xie Zheng-Guang (谢正光) Studying the intermittent stable theorem and the synchronization of a delayed fractional nonlinear system 2013 Chin. Phys. B 22 080506

[1] Dejardin J L 2003 Phys. Rev. E 68 031108
[2] Tarasov V E 2009 Theor. Math. Phys. 158 355
[3] Jumarie G 2010 Kybernetes 39 1167
[4] Choudhury M D, Chandra S and Nag S 2012 Colloid Surface A 407 64
[5] Dial O E, Ashoori R C, Pfeiffer L N and West K W 2010 Nature 464 566
[6] Casasanta G and Garra R 2012 Signal Image Video P 6 389
[7] Aghababa M P 2012 Chin. Phys. B 21 100505
[8] He J H 2012 Abstr. Appl. Anal. DOI: 10.1155/2012/916793
[9] Aydiner E 2005 Phys. Rev. E 71 6103
[10] He J H 2012 Therm. Sci. 2 331
[11] He J H2012 Math. Probl. Eng. DOI: 10.1155/2012/394212
[12] Li Y, Chen Y Q and Podlubny I 2010 Comput. Math. Appl. 59 1810
[13] Wong W K, Li H J and Leung S Y S 2012 Commun. Nonlinear Sci. Numer. Simul. 17 4877
[14] Wang F Q and Ma X K 2013 Chin. Phys. B 22 030506
[15] Gepreel K A and Omran S 2012 Chin. Phys. B 21 110204
[16] Si G Q, Sun Z Y, Zhang Y B 2012 Nonlinear Anal. Real World Appl. 13 1761
[17] Chen D Y, Zhang R F and Sprott J C 2012 Chaos 22
[18] Hegazi A S, Ahmed E and Matouk A E 2013 Commun. Nonlinear Sci. Numer. Simul. 18 1193
[19] Luo C and Wang X Y 2013 Nonlinear Dyn. 71 241
[20] Park M J, Kwon O M and Park J H 2011 Appl. Math. Comput. 217 7197
[21] Esfanjani R M and Nikravesh S K Y 2009 Iet Control Theory A 3 1395
[22] Senthilkumar D V, Kurths J and Lakshmanan M 2009 Phys. Rev. E 79 066208
[23] Lu J G 2006 Chin. Phys. 15 301
[24] Lin T C and Lee T Y 2011 IEEE T. Fuzzy Syst. 19 623
[25] Pecora L and Carroll T 1990 Phys. Rev. Lett. 64 821
[26] Fu S H, Lu Q S and Du Y 2012 Chin. Phys. B 21 060507
[27] Ye Z Y, Yang G and Deng C B 2011 Chin. Phys. B 20 010207
[28] Guo X Y and Li J M 2012 Commun. Nonlinear Sci. Numer. Simul. 17 4395
[29] Fu J, Yu M and Ma T D 2011 Chin. Phys. B 20 120508
[30] Zhang Q J, Luo J and Wan L 2013 Nonlinear Dyn. 71 353
[31] Wang Y J, Hao J N and Zuo Z Q 2010 Commun. Theor. Phys. 54 679
[32] Huang J J, Li C D, Zhang W and Wei P C 2012 Chin. Phys. B 21 090508
[33] Podlubny I 1999 Fractional Differential Equations (New York: Academic Press)
[34] Caputo M 1967 II, Geophys. J. R. Astron. Soc. 13 529
[35] Zhao L D, Hu J B and Fang J A 2012 Nonlinear Dyn. 70 475
[36] Wang X D and Tian L X 2006 Chaos, Solitons and Fractals 27 31
[1] Conformable fractional heat equation with fractional translation symmetry in both time and space
W S Chung, A Gungor, J Kříž, B C Lütfüoǧlu, and H Hassanabadi. Chin. Phys. B, 2023, 32(4): 040202.
[2] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[3] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[4] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[5] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[6] Effect of autaptic delay signal on spike-timing precision of single neuron
Xuan Ma(马璇), Yaya Zhao(赵鸭鸭), Yafeng Wang(王亚峰), Yueling Chen(陈月玲), and Hengtong Wang(王恒通). Chin. Phys. B, 2023, 32(3): 038703.
[7] Adaptive multi-step piecewise interpolation reproducing kernel method for solving the nonlinear time-fractional partial differential equation arising from financial economics
Ming-Jing Du(杜明婧), Bao-Jun Sun(孙宝军), and Ge Kai(凯歌). Chin. Phys. B, 2023, 32(3): 030202.
[8] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[9] Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping
Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(2): 020704.
[10] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[11] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[12] Inhibitory effect induced by fractional Gaussian noise in neuronal system
Zhi-Kun Li(李智坤) and Dong-Xi Li(李东喜). Chin. Phys. B, 2023, 32(1): 010203.
[13] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[14] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[15] Firing activities in a fractional-order Hindmarsh-Rose neuron with multistable memristor as autapse
Zhi-Jun Li(李志军), Wen-Qiang Xie(谢文强), Jin-Fang Zeng(曾金芳), and Yi-Cheng Zeng(曾以成). Chin. Phys. B, 2023, 32(1): 010503.
No Suggested Reading articles found!