Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 074209    DOI: 10.1088/1674-1056/22/7/074209
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Stabilization of optical solitons in chirped PT-symmetric lattices

Li Chun-Yan (李春艳)a, Huang Chang-Ming (黄长明)a, Dong Liang-Wei (董亮伟)b
a Department of Physics, Zhejiang Normal University, Jinhua 321004, China;
b Institute of Information Optics, Zhejiang Normal University, Jinhua 321004, China
Abstract  We investigate the stability properties of optical solitons in a chirped PT-symmetric lattice whose frequency changes in the transverse direction. Linear-stability analysis together with the direct propagation simulations demonstrates that the chirped lattice can improve the stability of optical solitons dramatically. The instability of fundamental solitons can be completely suppressed if the chirp rate exceeds a critical value. A broad stability area of dipole solitons appears if the lattice appropriately chirped. Thus, we propose an effective way to suppress the instability of solitons in PT-symmetric potentials.
Keywords:  stability      chirp rate      PT-symmetric lattices  
Received:  04 September 2012      Revised:  20 December 2012      Accepted manuscript online: 
PACS:  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.65.Jx (Beam trapping, self-focusing and defocusing; self-phase modulation)  
  42.65.Wi (Nonlinear waveguides)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11074221) and the Program for Innovative Research Team, Zhejiang Normal University, Jinhua, Zhejiang Province, China.
Corresponding Authors:  Dong Liang-Wei     E-mail:  donglw@zjnu.cn

Cite this article: 

Li Chun-Yan (李春艳), Huang Chang-Ming (黄长明), Dong Liang-Wei (董亮伟) Stabilization of optical solitons in chirped PT-symmetric lattices 2013 Chin. Phys. B 22 074209

[1] Kivshar Y S and Agrawal G P 2003 Optical Solitons: From Fibers to Photonic Crystals 1st edn. (San Diego: Academic Press)
[2] Fleischer J W, Segev M, Efremidis N K and Christodoulides D N 2003 Nature 422 147
[3] Chen Z and Yang J 2007 Nonlinear Optics and Applications (Kerala: Research Signpost) pp. 5
[4] Zhu W, Luo L, He Y and Wang H 2009 Chin. Phys. B 18 4319
[5] Lederer F, Stegeman G I, Christodoulides D N, Assanto G, Segev M and Silberberg Y 2008 Phys. Rep. 463 1
[6] Kartashov Y V, Malomed B A and Torner L 2011 Rev. Mod. Phys. 83 247
[7] Musslimani Z H, Makris K G, El-Ganainy R and Christodoulides D N 2008 Phys. Rev. Lett. 100 030402
[8] Rüter C E, Makris K G, El-Ganainy R, Christodoulides D N, Segev M and Kip D 2010 Nat. Phys. 6 192
[9] Zhou K, Guo Z, Wang J and Liu S 2010 Opt. Lett. 35 2928
[10] Wang H and Wang J 2011 Opt. Express 19 4030
[11] Lu Z and Zhang Z 2011 Opt. Express 19 11457
[12] Abdullaev F K, Kartashov Y V, Konotop V V and Zezyulin D A 2011 Phys. Rev. A 83 041805
[13] Zezyulin D A, Kartashov Y V and Konotop V V 2011 Europhys. Lett. 96 64003
[14] He Y, Zhu X, Mihalache D, Liu J and Chen Z 2012 Phys. Rev. A 85 013831
[15] Li C, Liu H and Dong L 2012 Opt. Express 20 16823
[16] Shi Z, Jiang X, Zhu X and Li H 2011 Phys. Rev. A 84 053855
[17] Nixon S, Ge L and Yang J 2012 Phys. Rev. A 85 023822
[18] Hu S and Hu W 2012 Chin. Phys. B 21 024212
[19] Kartashov Y V, Vysloukh V A and Torner L 2005 J. Opt. Soc. Am. B 22 1356
[20] Kartashov Y V, Vysloukh V A and Torner L 2007 Phys. Rev. A 76 013831
[21] Molina M I, Kartashov Y V, Torner L and Kivshar Y S 2007 Opt. Lett. 32 2668
[22] Molina M I, Kartashov Y V, Torner L and Kivshar Y S 2008 Phys. Rev. A 77 053813
[23] Xie J, He Y and Wang H 2010 J. Opt. Soc. Am. B 27 484
[24] Zheng J, Huang C, Zhong S and Dong L 2010 J. Opt. Soc. Am. B 27 2224
[25] Yin G, Zheng J and Dong L 2010 Opt. Commun. 283 583
[1] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[2] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[3] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[4] Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping
Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(2): 020704.
[5] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[6] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[7] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[8] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[9] Parametric decay instabilities of lower hybrid waves on CFETR
Taotao Zhou(周涛涛), Nong Xiang(项农), Chunyun Gan(甘春芸), Guozhang Jia(贾国章), and Jiale Chen(陈佳乐). Chin. Phys. B, 2022, 31(9): 095201.
[10] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[11] Kinetic theory of Jeans' gravitational instability in millicharged dark matter system
Hui Chen(陈辉), Wei-Heng Yang(杨伟恒), Yu-Zhen Xiong(熊玉珍), and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(7): 070401.
[12] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[13] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[14] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
[15] Interrogation of optical Ramsey spectrum and stability study of an 87Sr optical lattice clock
Jing-Jing Xia(夏京京), Xiao-Tong Lu(卢晓同), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(3): 034209.
No Suggested Reading articles found!