Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 074210    DOI: 10.1088/1674-1056/22/7/074210
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Deformed soliton, breather, and rogue wave solutions of an inhomogeneous nonlinear Schrödinger equation

Tao Yong-Sheng (陶勇胜)a, He Jing-Song (贺劲松)a, K. Porsezianb
a Department of Mathematics, Ningbo University, Ningbo 315211, China;
b Department of Physics, Pondicherry University, Puducherry 605014, India
Abstract  We use the 1-fold Darboux transformation (DT) of an inhomogeneous nonlinear Schrödinger equation (INLSE) to construct the deformed-soliton, breather, and rogue wave solutions explicitly. Furthermore, the obtained first-order deformed rogue wave solution, which is derived from the deformed breather solution through the Taylor expansion, is different from the known rogue wave solution of the nonlinear Schrödinger equation (NLSE). The effect of inhomogeneity is fully reflected in the variable height of the deformed soliton and the curved background of the deformed breather and rogue wave. By suitably adjusting the physical parameter, we show that a desired shape of the rogue wave can be generated. In particular, the newly constructed rogue wave can be reduced to the corresponding rogue wave of the nonlinear Schrödinger equation under a suitable parametric condition.
Keywords:  inhomogeneous nonlinear Schrödinger equation      Lax pair      Darboux transformation      soliton  
Received:  21 September 2012      Revised:  02 November 2012      Accepted manuscript online: 
PACS:  42.65.Tg (Optical solitons; nonlinear guided waves)  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
  05.45.Yv (Solitons)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10971109), K. C. Wong Magna Fund in Ningbo University, China, the Natural Science Foundation of 383 Ningbo, China (Grant No. 2011A610179), and the DST, DAE-BRNS, UGC, CSIR, India.
Corresponding Authors:  He Jing-Song     E-mail:  hejingsong@nbu.edu.cn;jshe@ustc.edu.cn

Cite this article: 

Tao Yong-Sheng (陶勇胜), He Jing-Song (贺劲松), K. Porsezian Deformed soliton, breather, and rogue wave solutions of an inhomogeneous nonlinear Schrödinger equation 2013 Chin. Phys. B 22 074210

[1] Nikolkina I and Didenkulova I 2011 Nat. Hazards Earth Syst. Sci. 11 2913
[2] Baschek B and Imai J 2011 Oceanogr 24 158
[3] Akhmediev N, Ankiewicz A and Taki M 2009 Phys. Lett. A 373 675
[4] Kharif C, Pelinovsky E and Slunyaev A 2009 Rouge Waves in the Ocean: Observation, Theories and Modeling (New York: Springer)
[5] Osborne A 2010 Nonlinear Ocean Waves and the Inverse Scattering Transform (New York: Elsevier)
[6] Müller P, Garrett C and Osborne A 2005 Oceanogr 18 66
[7] Bludov Yu V, Konotop V V and Akhmediev N 2009 Phys. Rev. A 80 033610
[8] Wen L, Li L, Li Z D, Song S W, Zhang X F and Liu W M 2011 Eur. Phys. J. D 64 473
[9] Ruderman M S 2010 Eur. Phys. J. Special Topics 185 57
[10] Moslem W M, Shukla P K and Eliasson B 2011 Europhys. Lett. 96 25002
[11] Yan Z 2010 Commun. Theor. Phys. 54 947
[12] Efimov V B, Ganshin A N, Kolmakov G V, McClintock P V E and Mezhov-Deglin L P 2010 Eur. Phys. J. Special Topics 185 181
[13] Solli D R, Ropers C, Koonath P and Jalali B 2007 Nature 450 1054
[14] Kibler B, Fatome J, Finot C, Millot G, Dias F, Genty G, Akhmediev N and Dudley J M 2010 Nature Phys. 6 790
[15] Akhmediev N, Ankiewicz A, Soto-Crespo J M and Dudley J M 2011 Phys. Lett. A 375 775
[16] Dudley J M, Genty G, Dias F, Kibler B and Akhmediev N 2009 Opt. Express 17 21497
[17] Arecchi F T, Bortolozzo U, Montina A and Residori S 2011 Phys. Rev. Lett. 106 153901
[18] Abdullaev F 1994 Theory of Solitons in Inhomogeneous Media (New York: Wiley)
[19] Serkin V N, Hasegawa A and Belyaeva T L 2007 Phys. Rev. Lett. 98 074102
[20] Serkin V N, Hasegawa A and Belyaeva T L 2010 Phys. Rev. A 81 023610
[21] Serkin V N, Hasegawa A and Belyaeva T L 2010 Journal of Modern Optics 57 1456
[22] Gao Y, Tan X Y and Lou S Y 2009 Chin. Phys. Lett. 26 030502
[23] Li H M, Ge L and He J R 2012 Chin. Phys. B 21 050512
[24] Fei J X and Zheng C L 2012 Chin. Phys. B 21 070304
[25] Kruglov V I, Peacock A C and Harvey J D 2003 Phys. Rev. Lett. 90 113902
[26] Ponomarenko S A and Agrawal G P 2006 Phys. Rev. Lett. 97 013901
[27] Serkin V N and Hasegawa A 2000 Phys. Rev. Lett. 85 4502
[28] Serkin V N, Hasegawa A and Belyaeva T L 2004 Phys. Rev. Lett. 92 199401
[29] Serkin V N and Hasegawa A 2000 JETP Lett. 72 89
[30] He J S and Li Y S 2011 Stud. Appl. Math. 126 1
[31] Li C Z and He J S 2012 Science China Physics: Mechanics and Astronomy
[32] Chen H H and Liu C S 1978 Phys. Fluids 21 377
[33] Kumar S and Hasegawa A 1997 Opt. Lett. 22 372
[34] Vinoj M N, Kuriakose V C and Porsezian K 2001 Chaos Soliton. Fract. 12 2569
[35] Li L, Li Z H, Li S Q and Zhou G S 2004 Opt. Commun. 234 169
[36] Matveev V B and Salli M A 1991 Darboux Transformations and Solitons (Berlin: Springer)
[37] Gu C H 2005 Darboux Transformation in Soliton Theory and its Geometric Applications (Shanghai: Shanghai Sci. Tech. Publishing House)
[38] Akhmediev N, Ankiewicz A and Soto-Crespo J M 2009 Phys. Rev. E 80 026601
[39] Ankiewicz A, Soto-Crespo J M and Akhmediev N 2010 Phys. Rev. E 81 046602
[40] Tao Y S and He J S 2012 Phys. Rev. E 85 026601
[41] Xu S W and He J S 2011 J. Phys. A 44 305203
[42] He J S, Xu S W and Porsezian K 2012 J. Soc. Phys. Jpn. 81 033002
[43] Yan Z Y 2010 Phys. Lett. A 374 672
[44] Wang Y Y, He J S and Li Y S 2011 Commun. Theor. Phys. 56 995
[45] Xu S W, He J S and Wang L H 2012 Europhys. Lett. 97 30007
[46] Dai C Q, Zhou G Q and Zhang J F 2012 Phys. Rev. E. 85 016603
[47] Dai C Q, Zheng C L and Zhu H P 2012 Eur. Phys. J. D 66 112
[48] He J S, Zhang L, Cheng Y and Li Y S 2006 Sci. China Series A 49 1867
[1] Positon and hybrid solutions for the (2+1)-dimensional complex modified Korteweg-de Vries equations
Feng Yuan(袁丰) and Behzad Ghanbari. Chin. Phys. B, 2023, 32(4): 040201.
[2] Riemann--Hilbert approach of the complex Sharma—Tasso—Olver equation and its N-soliton solutions
Sha Li(李莎), Tiecheng Xia(夏铁成), and Hanyu Wei(魏含玉). Chin. Phys. B, 2023, 32(4): 040203.
[3] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[4] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[5] Matrix integrable fifth-order mKdV equations and their soliton solutions
Wen-Xiu Ma(马文秀). Chin. Phys. B, 2023, 32(2): 020201.
[6] A cladding-pumping based power-scaled noise-like and dissipative soliton pulse fiber laser
Zhiguo Lv(吕志国), Hao Teng(滕浩), and Zhiyi Wei(魏志义). Chin. Phys. B, 2023, 32(2): 024207.
[7] Real-time observation of soliton pulsation in net normal-dispersion dissipative soliton fiber laser
Xu-De Wang(汪徐德), Xu Geng(耿旭), Jie-Yu Pan(潘婕妤), Meng-Qiu Sun(孙梦秋), Meng-Xiang Lu(陆梦想), Kai-Xin Li(李凯芯), and Su-Wen Li(李素文). Chin. Phys. B, 2023, 32(2): 024210.
[8] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[9] Charge self-trapping in two strand biomolecules: Adiabatic polaron approach
D Chevizovich, S Zdravković, A V Chizhov, and Z Ivić. Chin. Phys. B, 2023, 32(1): 010506.
[10] Oscillation properties of matter-wave bright solitons in harmonic potentials
Shu-Wen Guan(关淑文), Ling-Zheng Meng(孟令正), and Li-Chen Zhao(赵立臣). Chin. Phys. B, 2022, 31(8): 080506.
[11] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[12] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[13] Sequential generation of self-starting diverse operations in all-fiber laser based on thulium-doped fiber saturable absorber
Pei Zhang(张沛), Kaharudin Dimyati, Bilal Nizamani, Mustafa M. Najm, and S. W. Harun. Chin. Phys. B, 2022, 31(6): 064204.
[14] Manipulating vector solitons with super-sech pulse shapes
Yan Zhou(周延), Keyun Zhang(张克赟), Chun Luo(罗纯), Xiaoyan Lin(林晓艳), Meisong Liao(廖梅松), Guoying Zhao(赵国营), and Yongzheng Fang(房永征). Chin. Phys. B, 2022, 31(5): 054203.
[15] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
No Suggested Reading articles found!