Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(7): 070401    DOI: 10.1088/1674-1056/ac5239
GENERAL Prev   Next  

Kinetic theory of Jeans' gravitational instability in millicharged dark matter system

Hui Chen(陈辉), Wei-Heng Yang(杨伟恒), Yu-Zhen Xiong(熊玉珍), and San-Qiu Liu(刘三秋)
Jiangxi Province Key Laboratory of Fusion and Information Control, Department of Physics, Nanchang University, Nanchang 330031, China
Abstract  The possibility of baryons cooled by a millicharged dark matter (mDM) via mDM-baryons scattering has recently been proposed to explain the observation discrepancy from the experiment to detect the global epoch of reionization signature (EDGES). In this sense, we analyze the Jeans instability of self-gravitational systems in the background of mDM under kinetic regime that the collisionless Boltzmann equation and Poisson equation have been combined to obtain the modified dispersion relation. It is shown that the effect of mDM is significant on the dynamics of gravitational collapse, i.e., the presence of mDM makes the self-gravitational systems more difficult to collapse relatively.
Keywords:  self-gravitating systems      millicharged dark matter      Jeans instability  
Received:  14 October 2021      Revised:  04 January 2022      Accepted manuscript online:  07 February 2022
PACS:  04.40.-b (Self-gravitating systems; continuous media and classical fields in curved spacetime)  
  95.35.+d (Dark matter)  
  05.20.Dd (Kinetic theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11763006 and 11863004), the fund from the Jiangxi Provincial Key Laboratory of Fusion and Information Control (Grant No. 20171BCD40005), and the Project of Scientific and Technological Innovation Base of Jiangxi Province, China (Grant No. 20203CCD46008).
Corresponding Authors:  Hui Chen, San-Qiu Liu     E-mail:  hchen61@ncu.edu.cn;sqlgroup@ncu.edu.cn

Cite this article: 

Hui Chen(陈辉), Wei-Heng Yang(杨伟恒), Yu-Zhen Xiong(熊玉珍), and San-Qiu Liu(刘三秋) Kinetic theory of Jeans' gravitational instability in millicharged dark matter system 2022 Chin. Phys. B 31 070401

[1] Ade P A, Aghanim R N, Arnaud M, et al. 2016 Astron. Astrophys. 594 A13
[2] Rubin V C, Ford W K J and Thonnard N 1980 Astrophys. J. 238 471
[3] Zwicky F 2009 Gen. Relativ. Gravit. 41 207
[4] Muñoz J B and Loeb A 2017 J. Cosmol. Astropart. Phys. 1711 043
[5] Clowe D, Bradač M, Gonzalez A H, et al. 2006 Astrophys. J. 648 L109
[6] Jeans J H 1902 Phil. Trans. R. Soc. A 199 1
[7] Kremer G M, Richarte M G and Teston F 2018 Phys. Rev. D 97 023515
[8] Lima J A S, Silva R and Santos J 2002 Astron. Astrophys. 396 309
[9] Chen H, Zhang S X and Liu S Q 2017 Chin. Phys. Lett. 34 075101
[10] Yang W H, Xiong Y Z, Chen H and Liu S Q 2020 Chin. Phys. B 29 110401
[11] Tsiklauri D 1998 Astrophys. J. 507 226
[12] Kremer G M and André R 2016 Int. J. Mod. Phys. D 25 1650012
[13] Kremer G M, Richarte M G and Schiefer E M 2019 Eur. Phys. J. C 79 492
[14] Yang W H, Chen H and Liu S Q 2020 AIP Adv. 10 075003
[15] Akerib D S, Alsum S, Araújo H M, et al 2017 Phys. Rev. Lett. 118 251302
[16] Ackermann M, Ajello M, Albert A, et al 2017 Astrophys. J. 840 43
[17] Bowman J D, Rogers A E E, Monsalve P A, et al. 2018 Nature 555 67
[18] Muñoz J B and Loeb A 2018 Nature 557 684
[19] Barkana R 2018 Nature 555 71
[20] Rogatko M 2020 Eur. Phys. J. C 80 870
[21] Li J T and Lin T 2020 Phys. Rev. D 101 103034
[22] Rújula A D, Glashow S L and Sarid U 1990 Nucl. Phys. B 333 173
[23] Dimopoulos S, Eichler D, Esmailzadeh R and Starkman G D 1990 Phys. Rev. D 41 2388
[24] Chuzhoya L and Kolb E W 2009 J. Cosmol. Astropart. Phys. 7 14
[25] Moore B, Ghigna S, Governato F, et al. 1999 Astrophys. J. 524 L19
[26] Navarro J F and Steinmetz M 2000 Astrophys. J. 528 607
[27] Essig R, Mardon J and Volansky T 2012 Phys. Rev. D 85 076007
[28] Davidson S, Hannestad S and Raffelt G 2000 High Energy Phys. 05 003
[29] Boehm C, Dolan M J and McCabe C 2013 Astropart. Phys. 08 041
[30] Vogel H J and Redondo J 2014 Astropart. Phys. 02 029
[31] Chang J H, Essig R and McDermott S D 2018 High Energy Phys. 09 051
[32] Prinz A A, Baggs R, Ballam J, et al 1998 Phys. Rev. Lett. 81 1175
[33] Berlin A, Hooper D, Krnjaic G and McDermott S D 2018 Phys. Rev. Lett. 121 011102
[34] Sarbinowski C C, Ji L, Kovetz E D and Kamionkowski M 2019 Phys. Rev. D 100 023528
[35] Liu H W, Outmezguine N J, Redigolo D and Volansky T 2019 Phys. Rev. D 100 123011
[36] Davidson S B, Campbell B and Bailey D C 1991 Phys. Rev. D 43 2314
[37] Krebs J W and Hillebrandt W 1983 Astron. Astrophys. 128 411
[38] Boss A P, Ipatov S I, Keiser S A, et al. 2008 Astrophys. J. Lett. 686 L119
[39] Pandey B P and Avinash K 1994 Phys. Rev. E 49 5599
[40] Binney J and Tremaine S 1987 Galactic Dynamics (Princeton:Princeton University Press)
[41] Ade P A R, Aghanim N, Alves M I R, et al. 2014 Astron. Astrophys. 571 A1
[42] Gradshteyn I S and Ryzhik I M 2007 Table of Integrals, Series, and Products, edited by Jeffrey A and Zwillinger D (New York:Elsevier)
[43] Necib L, Lisanti M, Garrison-Kimmel S, et al. 2019 Astrophys. J. 883 27
[44] Blitz L and Shu F H 1980 Astrophys. J. 238 148
[45] Goldreich P and Kwan J 1974 Astrophys. J. 189 441
[46] Mac Low M M, Klessen R S, Burkert A and Smith M D 1998 Phys. Rev. Lett. 80 2754
[1] Jeans gravitational instability with κ-deformed Kaniadakis distribution in Eddington-inspired Born–Infield gravity
Wei-Heng Yang(杨伟恒), Yu-Zhen Xiong(熊玉珍), Hui Chen(陈辉), and San-Qiu Liu(刘三秋)$. Chin. Phys. B, 2020, 29(11): 110401.
No Suggested Reading articles found!