Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 070301    DOI: 10.1088/1674-1056/22/7/070301
GENERAL Prev   Next  

Decoherence dynamics of a charge qubit coupled to the noise bath

Yang Qin-Ying (杨芹英)a, Liang Bao-Long (梁宝龙)a, Wang Ji-Suo (王继锁)a b
a School of Physics Science and Information Engineering, Liaocheng University, Liaocheng 252059, China;
b College of Physics and Engineering, Qufu Normal University, Qufu 273165, China
Abstract  By virtue of the canonical quantization method, we present a quantization scheme about a charge qubit based on the superconducting quantum interference device (SQUID), taking the self-inductance of the loop into account. Under the reasonable short-time approximation, we study the effect of decoherence in the Ohmic case by employing the response function and the norm. It is confirmed that the decoherence time which depends on the parameters of circuit components, coupling strength, and temperature, can be as low as several picoseconds, so that there is enough time to record information.
Keywords:  charge qubit      decoherence      response function      norm  
Received:  29 November 2012      Revised:  13 February 2013      Accepted manuscript online: 
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
  03.65.-w (Quantum mechanics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11147009 and 11244005) and the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2010AQ027 and ZR2012AM004).
Corresponding Authors:  Wang Ji-Suo     E-mail:  jswang@lcu.edu.cn

Cite this article: 

Yang Qin-Ying (杨芹英), Liang Bao-Long (梁宝龙), Wang Ji-Suo (王继锁) Decoherence dynamics of a charge qubit coupled to the noise bath 2013 Chin. Phys. B 22 070301

[1] Josephson B D 1964 Rev. Mod. Phys. 36 216
[2] Vourdas A 1996 J. Mod. Opt. 43 2105
[3] Brandes T 2005 Phys. Rep. 408 315
[4] Ji Y H and Liu Y M 2013 Chin. Phys. B 22 020305
[5] Shirman A, Schon G and Hermon Z 1997 Phys. Rev. Lett. 79 2371
[6] Korotkov A N 1999 Phys. Rev. B 60 5737
[7] Petta J R, Johnson A C, Marcus C M, Hanson M P and Gossard A C 2004 Phys. Rev. Lett. 93 186802
[8] Fedichkin L, Yanchenko M and Valiev K A 2000 Nanotechnology. 11 387
[9] Gardelis S, Smith C G, Cooper J, Ritchie D A, Linfield E H, Jin Y and Pepper M 2003 Phys. Rev. B 67 073302
[10] Yan Y Y, Qin L G and Tian L J 2012 Chin. Phys. B 21 100304
[11] Zhang X X and Li F L 2011 Chin. Phys. B 20 110302
[12] Goldstein H 1980 Classical Mechanics (2nd edn.) (Addision-Wesley Publishing Company)
[13] Liang B L, Wang J S, Fan H Y and Meng X G 2008 Chin. Phys. Lett. 25 3753
[14] Privman V and Stat J 2003 Phys. 110 957
[15] Fedichin L and Fedorov A 2004 Phys. Rev. A 69 032311
[16] Leggett A J, Chakravarty S, Dorsey A T, Fisher M P A, Garg A and Zwerger W 1987 Rev. Mod. Phys. 59 1
[17] Morozov V G, Mathey S and Röpke G 2012 Phys. Rev. A 85 022101
[18] Weiss U 1999 Quantum Dissipative Systems (2nd edn.) (Singapore: World Scientific)
[19] Huelga S F and Plenio M B 2007 Phys. Rev. Lett. 98 170601
[20] Liang X T 2005 Phys. Rev. B 72 245328
[21] Markri N and Makarov D E 1995 J. Chem. Phys. 102 4600
[22] Liang B L, Wang J S, Meng X G and Su J 2010 Chin. Phys. B 19 010315
[23] Liang X T, Zhang W M and Zhuo Y Zh 2010 Phys. Rev. E 81 011906
[24] Hayashi T, Fujisawa T, Cheong H D, Jeong Y H and Hirayama Y 2003 Phys. Rev. Lett. 91 226804
[25] Petta J R, Johnson A C, Marcus C M, Hanson M P and Gossard A C 2004 Phys. Rev. Lett. 93 186802
[26] Steane A M 1996 Phys. Rev. A 54 47411
[27] Zurek W H 2003 Rev. Mod. Phys. 75 715
[28] Gray S K and Verosky J M 1993 J. Chem. Phys. 99 8680
[29] Blanes S and Moan P C 2000 Phys. Lett. A 265 35
[30] Fedichkin L, Fedorov A and Privman V 2003 Proc. SPIE. 5105 243
[31] Makhlin Y, Schon G and Shnirman A 2001 Rev. Mod. Phys. 73 357
[32] Liang X T and Xiong Y J 2004 Phys. Lett. A 332 8
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[3] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[4] All-fiber erbium-doped dissipative soliton laser with multimode interference based on saturable-reserve saturable hybrid optical switch
Xin Zhao(赵鑫), Renyan Wan(王仁严), Weiyan Li(李卫岩), Liang Jin(金亮), He Zhang(张贺), Yan Li(李岩), Yingtian Xu(徐英添), Linlin Shi(石琳琳), and Xiaohui Ma(马晓辉). Chin. Phys. B, 2022, 31(6): 064215.
[5] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[6] Protecting geometric quantum discord via partially collapsing measurements of two qubits in multiple bosonic reservoirs
Xue-Yun Bai(白雪云) and Su-Ying Zhang(张素英). Chin. Phys. B, 2022, 31(4): 040308.
[7] Normally-off AlGaN/GaN heterojunction field-effect transistors with in-situ AlN gate insulator
Taofei Pu(蒲涛飞), Shuqiang Liu(刘树强), Xiaobo Li(李小波), Ting-Ting Wang(王婷婷), Jiyao Du(都继瑶), Liuan Li(李柳暗), Liang He(何亮), Xinke Liu(刘新科), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2022, 31(12): 127701.
[8] Tunable optomechanically induced transparency and fast-slow light in a loop-coupled optomechanical system
Qinghong Liao(廖庆洪), Xiaoqian Wang(王晓倩), Gaoqian He(何高倩), and Liangtao Zhou(周良涛). Chin. Phys. B, 2021, 30(9): 094205.
[9] Real-space parallel density matrix renormalization group with adaptive boundaries
Fu-Zhou Chen(陈富州), Chen Cheng(程晨), and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2021, 30(8): 080202.
[10] Ground-state phase diagram of the dimerizedspin-1/2 two-leg ladder
Cong Fu(傅聪), Hui Zhao(赵晖), Yu-Guang Chen(陈宇光), and Yong-Hong Yan(鄢永红). Chin. Phys. B, 2021, 30(8): 087501.
[11] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[12] Equilibrium dynamics of the sub-ohmic spin-boson model at finite temperature
Ke Yang(杨珂) and Ning-Hua Tong(同宁华). Chin. Phys. B, 2021, 30(4): 040501.
[13] Near-optimal control of a stochastic rumor spreading model with Holling II functional response function and imprecise parameters
Liang'an Huo(霍良安) and Xiaomin Chen(陈晓敏). Chin. Phys. B, 2021, 30(12): 120205.
[14] Quantum to classical transition induced by a classically small influence
Wen-Lei Zhao(赵文垒), Quanlin Jie(揭泉林). Chin. Phys. B, 2020, 29(8): 080302.
[15] Improved hybrid parallel strategy for density matrix renormalization group method
Fu-Zhou Chen(陈富州), Chen Cheng(程晨), Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2020, 29(7): 070202.
No Suggested Reading articles found!