Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(6): 064201    DOI: 10.1088/1674-1056/22/6/064201
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Scattering by an array of parallel metallic carbon nanotubes

Afshin Moradia b
a Department of Nano Science, Kermanshah University of Technology, Kermanshah 67178-63766, Iran;
b Department of Nano Science, Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran 19395-5531, Iran
Abstract  The scattering of electromagnetic wave by an array of parallel metallic single-walled carbon nanotubes is investigated based on the boundary-value method. Electronic excitations over each nanotube surface are modeled as an infinitesimally thin cylindrical layer of the free-electron gas. The scattering cross section of both transverse magnetic (TM) and transverse electric (TE) uniform plane waves by the system at normal incidences is obtained.
Keywords:  carbon nanotube      scattering      TM mode      TE mode  
Received:  31 May 2012      Revised:  13 August 2013      Accepted manuscript online: 
PACS:  42.25.Fx (Diffraction and scattering)  
  41.20.Cv (Electrostatics; Poisson and Laplace equations, boundary-value problems)  
  42.25.Bs (Wave propagation, transmission and absorption)  
Corresponding Authors:  Afshin Moradi     E-mail:  a.moradi@kut.ac.ir

Cite this article: 

Afshin Moradi Scattering by an array of parallel metallic carbon nanotubes 2013 Chin. Phys. B 22 064201

[1] Slepyan G Ya, Maksimenko S A, Lakhtakia A, Yevtushenko O M and Gusakov A V 1998 Phys. Rev. B 57 9485
[2] Slepyan G Ya, Maksimenko S A, Lakhtakia A, Yevtushenko O M and Gusakov A V 1999 Phys. Rev. B 60 17136
[3] Shuba M V, Maksimenko S A and Lakhtakia A 2007 Phys. Rev. B 76 155407
[4] Wei L and Wang Y N 2004 Phys. Lett. A 333 303
[5] Moradi A 2013 Photon Nanostruct. Fundam. Appl. 11 85
[6] Hanson G W 2005 IEEE Trans. Antennas Propag. 53 3426
[7] Moradi A 2008 JETP Lett. 88 795
[8] Moradi A 2013 Appl. Phys. B 111 127
[9] Liu L, Han Z and He S 2005 Opt. Express 13 6645
[10] Ozbay E 2006 Science 311 189
[11] Peng Z, Peng J and Ou Y 2006 Phys. Lett. A 359 56
[12] Moradi A 2009 Phys. Plasmas 16 113501
[13] Moradi A 2010 Appl. Opt. 49 1728
[14] Miano G and Villone F 2006 IEEE Trans. Antennas Propag. 54 2713
[15] Slepyan G Ya, Shuba M V, Maksimenko S A and Lakhtakia A 2006 Phys. Rev. B 73 195416
[16] Hao J and Hanson G W 2006 Phys. Rev. B 74 035119
[17] Malic E, Hirtschulz M, Milde F, Wu Y, Maultzsch J, Heinz T F, Knorr A and Reich S 2008 Phys. Rev. B 77 045432
[18] Mikki S M and Kishk A 2007 Microwave Opt. Technol. Lett. 49 2360
[19] Mikki S M and Kishk A 2009 PIER 17 49
[20] Moradi A 2010 Phys. Plasmas 17 033504
[21] Khosravi H and Moradi A 2011 J. Mod. Opt. 58 1566
[22] Khosravi H and Moradi A 2011 Opt. Commun. 284 2629
[23] Wang Y, Wu Q, Wu Y M, He X J and Li L W 2012 Chin. Phys. B 21 014212
[24] Moradi A and Khosravi H 2011 J. Opt. Soc. Am. A 28 1920
[25] Olaofe G 1970 IEEE Trans. Antennas Propag. AP-18 823
[26] Olaofe G 1970 Radio Sci. 5 1351
[27] Ragheb H A and Hamid M 1985 Int. J. Electron. 59 407
[28] Elsherbeni A Z and Hamid M 1987 IEEE Trans. Antennas Propag. AP-35 355
[29] Elsherbeni A Z and Kishk A A 1992 IEEE Trans. Antennas Propag. 40 96
[30] Henin B H, Sharkawy M H Al and Elsherbeni A Z 2007 PIER 77 285
[31] Martin P A 2006 Multiple Scattering: Interaction of Time-Harmonic Waves with N Obstacles (New York: Cambridge University Press)
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[5] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[6] Floquet scattering through a parity-time symmetric oscillating potential
Xuzhen Cao(曹序桢), Zhaoxin Liang(梁兆新), and Ying Hu(胡颖). Chin. Phys. B, 2023, 32(3): 030302.
[7] Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers
Yi Liu(刘毅), Yuanqi Gu(顾源琦), Yu Ning(宁钰), Pengfei Chen(陈鹏飞), Yao Yao(姚尧),Yajun You(游亚军), Wenjun He(贺文君), and Xiujian Chou(丑修建). Chin. Phys. B, 2022, 31(9): 094208.
[8] Elastic electron scattering with CH2Br2 and CCl2Br2: The role of the polarization effects
Xiaoli Zhao(赵小利) and Kedong Wang(王克栋). Chin. Phys. B, 2022, 31(8): 083402.
[9] Integral cross sections for electron impact excitations of argon and carbon dioxide
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(8): 083401.
[10] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[11] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[12] Switchable directional scattering based on spoof core—shell plasmonic structures
Yun-Qiao Yin(殷允桥), Hong-Wei Wu(吴宏伟), Shu-Ling Cheng(程淑玲), and Zong-Qiang Sheng(圣宗强). Chin. Phys. B, 2022, 31(5): 054101.
[13] Effects of Landau damping and collision on stimulated Raman scattering with various phase-space distributions
Shanxiu Xie(谢善秀), Yong Chen(陈勇), Junchen Ye(叶俊辰), Yugu Chen(陈雨谷), Na Peng(彭娜), and Chengzhuo Xiao(肖成卓). Chin. Phys. B, 2022, 31(5): 055201.
[14] Small-angle neutron scattering study on the stability of oxide nanoparticles in long-term thermally aged 9Cr-oxide dispersion strengthened steel
Peng-Lin Gao(高朋林), Jian Gong(龚建), Qiang Tian(田强), Gung-Ai Sun(孙光爱), Hai-Yang Yan(闫海洋),Liang Chen(陈良), Liang-Fei Bai(白亮飞), Zhi-Meng Guo(郭志猛), and Xin Ju(巨新). Chin. Phys. B, 2022, 31(5): 056102.
[15] Oscillator strength study of the excitations of valence-shell of C2H2 by high-resolution inelastic x-ray scattering
Qiang Sun(孙强), Ya-Wei Liu(刘亚伟), Yuan-Chen Xu(徐远琛), Li-Han Wang(王礼涵), Tian-Jun Li(李天钧), Shu-Xing Wang(汪书兴), Ke Yang(杨科), and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(5): 053401.
No Suggested Reading articles found!