Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 056601    DOI: 10.1088/1674-1056/22/5/056601
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Diffusion of aluminum in MgO: A thermodynamic approach study

Zhang Bao-Hua (张宝华)a, Wu Xiao-Ping (吴小平)b
a Institute for Study of the Earth's Interior, Okayama University, Misasa, Tottori-ken 682-0193, Japan;
b School of Earth and Space Science, University of Science and Technology of China, Hefei 230026, China
Abstract  We have applied a thermodynamical model to calculate the diffusion coefficient of aluminum in MgO with the aid of bulk elastic properties. Our calculated diffusivities as a function of temperature and pressure are compared with the existing results derived from the experimental or theoretical investigations. We find that the present model provides a satisfactory estimation for the activation volume and the activation enthalpy.
Keywords:  MgO      diffusion      aluminum      cBΩ model  
Received:  16 November 2012      Revised:  28 December 2012      Accepted manuscript online: 
PACS:  66.30.J- (Diffusion of impurities ?)  
  64.30.Jk (Equations of state of nonmetals)  
  91.60.Dc (Plasticity, diffusion, and creep)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 40874034), the National High Technology Research and Development Program of China (Grant No. 2012AA061403), and the COE-21 Program of the Institute for Study of the Earth's Interior, Okayama University, Japan.
Corresponding Authors:  Zhang Bao-Hua     E-mail:  zhangbh@cc.okayama-u.ac.jp

Cite this article: 

Zhang Bao-Hua (张宝华), Wu Xiao-Ping (吴小平) Diffusion of aluminum in MgO: A thermodynamic approach study 2013 Chin. Phys. B 22 056601

[1] Vočadlo L, Wall A, Parker S C and Price G D 1995 Phys. Earth Planet. Inter. 88 193
[2] Ita J and Cohen R E 1997 Phys. Rev. Lett. 79 3198
[3] Ita J and Cohen R E 1998 Geophys. Res. Lett. 25 1095
[4] Oganov A R and Dorogokupets P I 2003 Phys. Rev. B 67 224110
[5] Karki B B and Khanduja G 2006 Am. Mineral. 91 511
[6] Ito Y and Toriumi M 2007 J. Geophys. Res. 112 B04206
[7] Speziale S, Zha C, Duffy T S, Hemley R J and Mao H K 2001 J. Geophys. Res. 106 515
[8] Fei Y, Li J, Hirose K, Minarik W, Van Orman J, Sanloup C, Westrenen W, Komabayashi T and Funakoshi K 2004 Phys. Earth Planet. Inter. 143-144 515
[9] Kono Y, Irifune T, Higo Y, Inoue T and Barnhoorn A 2010 Phys. Earth Planet. Inter. 183 196
[10] Duffy T S, Hemley R J and Mao H K 1995 Phys. Rev. Lett. 74 1371
[11] Isaak D G, Anderson O L and Goto T 1989 Phys. Chem. Mineral. 16 704
[12] Matsui M, Parker S C and Leslie M 2000 Am. Mineral. 85 312
[13] Li H P, Xu L P and Liu C Q 2005 J. Geophys. Res. 110 B05203
[14] Aizawa Y and Yoneda A 2006 Phys. Earth Planet. Inter. 155 87
[15] Wu Z, Wentzcovitch R M, Umemoto K, Li B, Hirose K and Zheng J 2008 J. Geophys. Res. 113 B06204
[16] Jin K, Li X Z, Wu Q, Geng H Y, Cai L G, Zhou X M and Jing F Q 2010 J. Appl. Phys. 107 113518
[17] Merkel S, Wenk H R, Shu J F, Shen G Y, Gillet P, Mao H K and Hemley R J 2002 J. Geophys. Res. 107 2271
[18] Cordier P, Amodeo J and Carrez P 2012 Nature 481 177
[19] Gourdin W H and Kingery W D 1979 J. Mater. Sci. 14 2053
[20] Wuensch B J, Steele W C and Vasilos T 1973 J. Chem. Phys. 58 5258
[21] Van Orman J A, Fei Y W, Hayri E H and Wang J H 2003 Geophys. Res. Lett. 30 1056
[22] Sempolinsky D R and Kingery W D 1980 J. Am. Ceram. Soc. 63 664
[23] Wu X P, Zhang B H, Xu J S, Katsura T, Zhai S M, Yoshino T, Manthilake G and Shatskiy A 2010 Physica B 405 53
[24] Wood B J 2000 Earth Planet. Sci. Lett. 174 341
[25] Holzapfel C, Rubie D C, Frost D J and Langenhorst F 2005 Science 309 1707
[26] Van Orman J A, Li C and Crispin K 2009 Phys. Earth Planet. Inter. 172 34
[27] Ammann M W, Brodholt J P and Dobson D P 2012 Phys. Chem. Mineral. 39 503
[28] Dologlou E 2011 J. Appl. Phys. 110 036103
[29] Zhang B H 2012 J. Asian Earth Sci. 54-55 9
[30] Zhang B H and Wu X P 2012 Appl. Phys. Lett. 100 051901
[31] Varotsos P A 1976 Phys. Rev. B 13 938
[32] Varotsos P A and Alexopoulos K D 1977 Phys. Rev. B 15 4111
[33] Varotsos P A and Alexopoulos K D 1979 J. Physics C: Solid State 12 L761
[34] Varotsos P A and Alexopoulos K D 1980 Phys. Rev. B 22 3130
[35] Varotsos P A and Alexopoulos K D 1984 Phys. Rev. B 30 7305
[36] Varotsos P A and Alexopoulos K D 1986 Thermodynamics of Point Defects and Their Relation with Bulk Properties (North Holland: Amsterdam)
[37] Varotsos P A and Ludwig W 1978 J. Physics C: Solid State 11 L305
[38] Varotsos P A, Ludwig W and Falter C 1978 J. Physics C: Solid State 11 L311
[39] Varotsos P A, Ludwig W and Alexopoulos K D 1978 Phys. Rev. B 18 2683
[40] Varotsos P A and Alexopoulos K D 1982 Physica Status Solidi B 110 9
[41] Varotsos P A 2007 J. Appl. Phys. 101 123503
[42] Varotsos P A and Alexopoulos K D 1981 Phys. Rev. B 24 3606
[43] Dologlou E 2010 J. Appl. Phys. 107 083507
[44] Dologlou E 2010 Glass Phys. Chem. 36 570
[45] Varotsos P A 2007 Phys. Rev. B 76 092106
[46] Varotsos P A 2008 Solid State Ionics 179 438
[47] Varotsos P A 2007 Phys. Rev. B 75 172107
[48] Papathanassiou A N and Sakellis I 2010 J. Chem. Phys. 132 154503
[49] Papathanassiou A N, Sakellis I and Grammatikakis J 2010 Appl. Phys. Lett. 97 041913
[50] Zhang B H, Wu X P, Xu J S and Zhou R L 2010 J. Appl. Phys. 108 053505
[51] Zhang B H, Wu X P and Zhou R L 2011 Solid State Ionics 186 20
[52] Zhang B H and Wu X P 2011 J. Asian Earth Sci. 42 134
[53] Shewmon P G 1963 Diffusion in Solids (New York: McGraw-Hill)
[54] Varotsos P A 2009 J. Appl. Phys. 105 083524
[55] Fabrichnaya O, Saxena S K, Richet P and Westrum E F 2004 Thermodynamic Data, Models and Phase Diagrams in Multicompoent Systems (Berlin: Springer)
[56] Lidiard A B 1955 Phil. Mag. 46 1218
[57] Varotsos P A and Alexopoulos K D 1977 J. Phys. Chem. Solids 38 997
[58] Lazaridou M, Varotsos C, Alexopoulos K D and Varotsos P A 1985 J. Physics C: Solid State 18 3891
[1] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[2] Heterogeneous hydration patterns of G-quadruplex DNA
Cong-Min Ji(祭聪敏), Yusong Tu(涂育松), and Yuan-Yan Wu(吴园燕). Chin. Phys. B, 2023, 32(2): 028702.
[3] Coercivity enhancement of sintered Nd-Fe-B magnets by grain boundary diffusion with Pr80-xAlxCu20 alloys
Zhe-Huan Jin(金哲欢), Lei Jin(金磊), Guang-Fei Ding(丁广飞), Shuai Guo(郭帅), Bo Zheng(郑波),Si-Ning Fan(樊思宁), Zhi-Xiang Wang(王志翔), Xiao-Dong Fan(范晓东), Jin-Hao Zhu(朱金豪),Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Jing Pan(潘晶), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2023, 32(1): 017505.
[4] Anomalous diffusion in branched elliptical structure
Kheder Suleiman, Xuelan Zhang(张雪岚), Erhui Wang(王二辉),Shengna Liu(刘圣娜), and Liancun Zheng(郑连存). Chin. Phys. B, 2023, 32(1): 010202.
[5] Phosphorus diffusion and activation in fluorine co-implanted germanium after excimer laser annealing
Chen Wang(王尘), Wei-Hang Fan(范伟航), Yi-Hong Xu(许怡红), Yu-Chao Zhang(张宇超), Hui-Chen Fan(范慧晨), Cheng Li(李成), and Song-Yan Cheng(陈松岩). Chin. Phys. B, 2022, 31(9): 098503.
[6] Core structure and Peierls stress of the 90° dislocation and the 60° dislocation in aluminum investigated by the fully discrete Peierls model
Hao Xiang(向浩), Rui Wang(王锐), Feng-Lin Deng(邓凤麟), and Shao-Feng Wang(王少峰). Chin. Phys. B, 2022, 31(8): 086104.
[7] Influence of particle size on the breaking of aluminum particle shells
Tian-Yi Wang(王天一), Zheng-Qing Zhou(周正青), Jian-Ping Peng(彭剑平),Yu-Kun Gao(高玉坤), and Ying-Hua Zhang(张英华). Chin. Phys. B, 2022, 31(7): 076107.
[8] Improving sound diffusion in a reverberation tank using a randomly fluctuating surface
Qi Li(李琪), Dingding Xie(谢丁丁), Rui Tang(唐锐), Dajing Shang(尚大晶), and Zhichao Lv(吕志超). Chin. Phys. B, 2022, 31(6): 064302.
[9] Effect of the target positions on the rapid identification of aluminum alloys by using filament-induced breakdown spectroscopy combined with machine learning
Xiaoguang Li(李晓光), Xuetong Lu(陆雪童), Yong Zhang(张勇),Shaozhong Song(宋少忠), Zuoqiang Hao(郝作强), and Xun Gao(高勋). Chin. Phys. B, 2022, 31(5): 054212.
[10] Self-adaptive behavior of nunchakus-like tracer induced by active Brownian particles
Yi-Qi Xia(夏益祺), Guo-Qiang Feng(冯国强), and Zhuang-Lin Shen(谌庄琳). Chin. Phys. B, 2022, 31(4): 040204.
[11] Studies on aluminum powder combustion in detonation environment
Jian-Xin Nie(聂建新), Run-Zhe Kan(阚润哲), Qing-Jie Jiao(焦清介), Qiu-Shi Wang(王秋实), Xue-Yong Guo(郭学永), and Shi Yan(闫石). Chin. Phys. B, 2022, 31(4): 044703.
[12] Diffusion of a chemically active colloidal particle in composite channels
Xin Lou(娄辛), Rui Liu(刘锐), Ke Chen(陈科), Xin Zhou(周昕), Rudolf Podgornik, and Mingcheng Yang(杨明成). Chin. Phys. B, 2022, 31(4): 044704.
[13] Solid-liquid transition induced by the anisotropic diffusion of colloidal particles
Fu-Jun Lin(蔺福军), Jing-Jing Liao(廖晶晶), Jian-Chun Wu(吴建春), and Bao-Quan Ai(艾保全). Chin. Phys. B, 2022, 31(3): 036401.
[14] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
[15] Generation of laser-driven flyer dominated by shock-induced shear bands: A molecular dynamics simulation study
Deshen Geng(耿德珅), Danyang Liu(刘丹阳), Jianying Lu(鲁建英), Chao Chen(陈超), Junying Wu(伍俊英), Shuzhou Li(李述周), and Lang Chen(陈朗). Chin. Phys. B, 2022, 31(2): 024101.
No Suggested Reading articles found!