Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 024101    DOI: 10.1088/1674-1056/ac2f2d
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Generation of laser-driven flyer dominated by shock-induced shear bands: A molecular dynamics simulation study

Deshen Geng(耿德珅)1, Danyang Liu(刘丹阳)1,2,†, Jianying Lu(鲁建英)1, Chao Chen(陈超)2, Junying Wu(伍俊英)1, Shuzhou Li(李述周)2, and Lang Chen(陈朗)1
1 State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China;
2 School of Materials Science and Engineering, Nanyang Technological University, Singapore
Abstract  High-power pulsed lasers provide an ingenious method for launching metal foils to generate high-speed flyers for high-pressure loading in material science or aerospace engineering. At high-temperature and high-pressure laser-induced conditions, the dynamic response of the metals and the mechanism of flyer formation remain unclear. In this study, the overall process of the laser-driven aluminum flyer, including laser ablation, rupture of metal foil, and the generation of the flyer was investigated by molecular dynamics combined with the two-temperature model. It was found that under high laser fluence (over 1.3 J/cm2 with 200-fs laser pulse duration), the laser induced a shock wave with a peak pressure higher than 25 GPa, which led to shear bands expanding from the edge of the laser ablation zone in the foil. Compared with the cases of low laser fluence less than 0.5 J/cm2, the shear band induced by high laser fluence promotes the rupture of the foil and results in a high-speed flyer (> 1 km/s) with better flatness and integrity. In addition, the shock wavefront was found to be accompanied by aluminum crystal phase transformation from face-centered cubic (FCC) to body-centered cubic structure. The crystal structure reverts with the decrease of pressure, therefore the internal structure of the generated flyer is pure of FCC. The results of this study provide a better understanding of the laser-induced shock effect on the foil rupture and flyer quality and forward the development of the laser-driven flyer.
Keywords:  laser-aluminum interaction      laser-induced shock wave      phase transition  
Received:  06 August 2021      Revised:  01 September 2021      Accepted manuscript online:  13 October 2021
PACS:  41.75.Jv (Laser-driven acceleration?)  
  02.70.Ns (Molecular dynamics and particle methods)  
  47.40.Nm (Shock wave interactions and shock effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11832006) and the Opening Fund of State Key Laboratory of Explosion Science and Technology in China (Grant No. KFJJ20-04M).
Corresponding Authors:  Danyang Liu     E-mail:  ldybit@bit.edu.cn

Cite this article: 

Deshen Geng(耿德珅), Danyang Liu(刘丹阳), Jianying Lu(鲁建英), Chao Chen(陈超), Junying Wu(伍俊英), Shuzhou Li(李述周), and Lang Chen(陈朗) Generation of laser-driven flyer dominated by shock-induced shear bands: A molecular dynamics simulation study 2022 Chin. Phys. B 31 024101

[1] Decoste R, Bodner S E, Ripin B H, McLean E A, Obenschain S P and Armstrong C M 1979 Phys. Rev. Lett. 42 1673
[2] Xiong F, Yang H F, Liu K, Man J X and Chen H X 2020 Microsyst. Technol. 26 353
[3] Zhou M, Huang T and Cai L 2008 Appl. Phys. A-Mater. Sci. Process. 90 293
[4] Dean S W, De Lucia F C and Gottfried J L 2017 Appl. Opt. 56 B134
[5] Watson S, Gifford M J and Field J E 2000 J. Appl. Phys. 88 65
[6] Verker R, Grossman E, Gouzman I and Eliaz N 2007 Polymer 48 19
[7] Katz S, Grossman E, Gouzman I, Murat M, Wiesel E and Wagner H D 2008 Int. J. Impact Eng. 35 1606
[8] Mattle T, Shaw-Stewart J, Schneider C W, Lippert T and Wokaun A 2012 Appl. Surf. Sci. 258 9352
[9] Guo W, Wu L Z, Meng N X, Chen Y R, Ma Z P, Zhou X, Zhang W, Shen R Q and Ye Y H 2019 Chem. Eng. J. 360 1071
[10] Wang H and Wang Y 2017 Opt. Lasers Eng. 97 1
[11] Banishev A A, Shaw W L, Bassett W P and Dlott D D 2016 J. Dynamic Behavior Mater. 2 194
[12] Curtis A D, Banishev A A, Shaw W L and Dlott D D 2014 Rev. Sci. Instrum. 85 043908
[13] Paisley D L 2006 High-Power Laser Ablation VI, June 14, 2006, Taos, NM, USA, p. 62611Y
[14] Lawrence R J and Trott W M 1991 J. Phys. IV France 1 C3-453
[15] Lawrence R J and Trott W M 1993 Int. J. Impact Eng. 14 439
[16] Buttapeng C, Azuma S and Harada N 2009 Vacuum 84 540
[17] Zhang P B, Qin Y, Zhao J J, Wen B, Cao Y and Gong Z Z 2009 J. Phys. D:Appl. Phys. 42 225302
[18] Chen L, Wang F and Wu J Y 2013 Laser Part. Beams 31 735
[19] Liu X Y, Ercolessi F and Adams J B 2004 Modell. Simul. Mater. Sci. Eng. 12 665
[20] Daw M S and Baskes M I 1984 Phys. Rev. B 29 6443
[21] Morse P M 1929 Phys. Rev. 34 57
[22] Lennard-Jones J E 1925 Proc. R. Soc. Lond. Ser. A-Contain. Rap. Math. Phys. Character 109 752
[23] Xiong Q L, Kitamura T and Li Z H 2019 Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 752 115
[24] Xiong Q L, Kitamura T and Li Z H 2019 J. Appl. Phys. 125 194302
[25] Zong H, He P, Ding X and Ackland G J 2020 Phys. Rev. B 101 144105
[26] Förster G D and Lewis L J 2018 Phys. Rev. B 97 224301
[27] Anisimov S I, Kapeliovich B L and Perelman T L 1974 Zhurnal Eksperimentalnoi Teor. Fiz. 66 776
[28] Povarnitsyn M E, Andreev N E, Apfelbaum E M, Itina T E, Khishchenko K V, Kostenko O F, Levashov P R and Veysman M E 2012 Appl. Surf. Sci. 258 9480
[29] Povarnitsyn M E and Levashov P R 2019 Appl. Phys. A-Mater. Sci. Process. 125 688
[30] Ivanov D S and Zhigilei L V 2003 Phys. Rev. B 68 064114
[31] Sonntag S, Roth J, Gaehler F and Trebin H R 2009 Appl. Surf. Sci. 255 9742
[32] Cheng C R and Xu X F 2005 Phys. Rev. B 72 165415
[33] Perez D and Lewis L J 2003 Phys. Rev. B 67 15
[34] Jia X and Zhao X 2019 Appl. Surf. Sci. 463 781
[35] Li X, Jiang L and Tsai H L 2009 J. Appl. Phys. 106 064906
[36] Plech A, Leiderer P and Boneberg J 2009 Laser Photon. Rev. 3 435
[37] Geng D, Chen L, Liu D, Zhao P, Lu J and Wu J 2021 J. Appl. Phys. 129 204302
[38] Liu Q Y, Zhou J, Zhao Y W, Xiong L C, Shi T L and Long Y H 2019 Comput. Mater. Sci. 160 420
[39] Hoover W G 1985 Phys. Rev. A 31 1695
[40] Nose S 1984 J. Chem. Phys. 81 511
[41] Magda J J, Tirrell M and Davis H T 1985 J. Chem. Phys. 83 1888
[42] Christensen B H, Vestentoft K and Balling P 2007 Appl. Surf. Sci. 253 6347
[43] Morel V, Bultel A and Chéron B 2009 Int. J. Thermophys. 30 1853
[44] Sjostrom T, Crockett S and Rudin S 2016 Phys. Rev. B 94 144101
[45] Wagner G J, Jones R E, Templeton J A and Parks M L 2008 Comput. Meth. Appl. Mech. Eng. 197 3351
[46] Plimpton S 1995 J. Comput. Phys. 117 1
[47] Thompson A P, Plimpton S J and Mattson W 2009 J. Chem. Phys. 131 154107
[48] Yu H, Fedotov V, Baek W and Yoh J J 2014 Appl. Phys. A-Mater. Sci. Process. 115 971
[49] Guo W, Wu L Z, He N B, Chen S J, Zhang W, Shen R Q and Ye Y H 2018 Laser Part. Beams 36 29
[50] Shaw-Stewart J, Lippert T, Nagel M, Nuesch F and Wokaun A 2012 Appl. Surf. Sci. 258 9309
[51] Stukowski A 2010 Modell. Simul. Mater. Sci. Eng. 18 015012
[52] Ackland G J and Jones A P 2006 Phys. Rev. B 73 7
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[3] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[4] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[5] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[6] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[7] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[8] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[9] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[10] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[11] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[12] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[13] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[14] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[15] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
No Suggested Reading articles found!