Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 040204    DOI: 10.1088/1674-1056/ac29b1
GENERAL Prev   Next  

Self-adaptive behavior of nunchakus-like tracer induced by active Brownian particles

Yi-Qi Xia(夏益祺)1,2,†, Guo-Qiang Feng(冯国强)2, and Zhuang-Lin Shen(谌庄琳)2,3,‡
1 Department of Physics and Electronic Engineering, Yancheng Teachers University, Yancheng 224007, China;
2 Center for Soft Condensed Matter Physics&Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China;
3 Department of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
Abstract  We design a nunchakus-like tracer and investigate its self-adaptive behavior in an active Brownian particle (ABP) bath via systematically tuning the self-propelled capability and density of ABPs. Specifically, the nunchakus-like tracer will have a stable wedge-like shape in the ABP bath when the self-propelled force is high enough. We analyze the angle between the two arms of the tracer and the velocity of the joint point of the tracer. The angle exhibits a non-monotonic phenomenon as a function of active force. However, it increases with density of ABPs increasing monotonically. A simple linear relationship between the velocity and the self-propelled force is found under the highly active force. In other words, the joint points of the tracer diffuse and the super-diffusive behavior can make the relation between the self-propelled force and the density of ABPs persist longer. In addition, we find that the tracer can flip at high density of ABPs. Our results also suggest the new self-adaptive model research of the transport properties in a non-equilibrium medium.
Keywords:  tracer      self-adaptive      super-diffusion      active Brownian particles  
Received:  22 July 2021      Revised:  05 September 2021      Accepted manuscript online:  24 September 2021
PACS:  02.70.Ns (Molecular dynamics and particle methods)  
  64.70.qj (Dynamics and criticality)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11804085 and 21674078), the Natural Science Foundation of the Jiangsu Provincial Higher Education Institutions, China (Grant No. 21KJB140023), and the Foundation of Jiangsu Provincial Innovation and Entrepreneurship Doctor, China (Grant No. JSSCBS20211147).
Corresponding Authors:  Yi-Qi Xia, Zhuang-Lin Shen     E-mail:  xiayq@yctu.edu.cn;shenzl@szu.edu.cn

Cite this article: 

Yi-Qi Xia(夏益祺), Guo-Qiang Feng(冯国强), and Zhuang-Lin Shen(谌庄琳) Self-adaptive behavior of nunchakus-like tracer induced by active Brownian particles 2022 Chin. Phys. B 31 040204

[1] Bechinger C, Leonardo R D, Löwen H, Reichhardt C, Volpe G and Volpe G 2016 Rev. Mod. Phys. 88 045006
[2] Chen C, Liu S, Shi X, Chaté H and Wu Y 2017 Nature 542 210
[3] Shi X and Ma Y 2013 Nat. Commun. 4 3013
[4] Shi X and Ma Y 2010 Proc. Natl. Acad. Sci. USA 107 11709
[5] Deseigne J, Dauchot O and Chaté H 2010 Phys. Rev. Lett. 105 098001
[6] Duman Ö, Isele-Holder R E, Elgeti J and Gompper G 2018 Soft Matter 14 4483
[7] Di Leonardo R, Angelani L, Dell'Arciprete D, Ruocco G, Iebba V, Schippa S, Conte M P, Mecarini F, De Angelis F and Di Fabrizio E 2010 Proc. Natl. Acad. Sci. USA 107 9541
[8] Sokolov A, Apodaca M M, Grzybowski B A and Aranson I S 2010 Proc. Natl. Acad. Sci. USA 107 969
[9] Li H and Zhang H P 2013 Europhys. Lett. 102 50007
[10] Mallory S A, Valeriani C and Cacciuto A 2014 Phys. Rev. E 90 032309
[11] Li H, Zhang B, Li J, Tian W and Chen K 2015 J. Chem. Phys. 143 224903
[12] Ni R, Cohen Stuart M A and Bolhuis P G 2015 Phys. Rev. Lett. 114 018302
[13] Hamoy E and Confesor M N 2015 IOP Conf. Ser.:Mater. Sci. Eng. 79 012013
[14] Yang Q, Fan Q, Shen Z, Xia Y, Tian W and Chen K 2018 J. Chem. Phys. 148 214904
[15] Xia Y, Tian W, Chen K and Ma Y 2019 Phys. Chem. Chem. Phys. 21 4487
[16] Xia Y, Shen Z, Tian W and Chen K 2019 J. Chem. Phys. 150 154903
[17] Li H, Wang C, Tian W, Ma Y, Xu C, Zheng N and Chen K 2017 Soft Matter 13 8031
[18] Wang C, Li H, Ma Y, Tian W and Chen K 2018 J. Chem. Phys. 149 164902
[19] Tian W, Gu Y, Guo Y and Chen K 2017 Chin. Phys. B 26 100502
[20] Wang C, Guo Y, Tian W and Chen K 2019 J. Chem. Phys. 150 044907
[21] Shan W, Zhang F, Tian W and Chen K 2019 Soft Matter 15 4761
[22] Kaiser A, Wensink H H and Löwen H 2012 Phys. Rev. Lett. 108 268307
[23] Kaiser A, Peshkov A, Sokolov A, ten Hagen B, Löwen H and Aranson I S 2014 Phys. Rev. Lett. 112 158101
[24] Liao J, Huang X and Ai B 2018 J. Chem. Phys. 148 094902
[25] Kumar N, Gupta R K, Soni H, Ramaswamy S and Sood A K 2019 Phys. Rev. E 99 032605
[26] Kaiser A and Löwen H 2014 J. Chem. Phys. 141 044903
[27] Plimpton S 1995 J. Comput. Phys. 117 1
[28] Nikola N, Solon A P, Kafri Y, Kardar M, Tailleur J and Voituriez R 2016 Phys. Rev. Lett. 117 098001
[29] Fily Y, Baskaran A and Hagan M F 2014 Soft Matter 10 5609
[30] Redner G S, Hagan M F and Baskaran A 2013 Phys. Rev. Lett. 110 055701
[1] Constraint dependence of average potential energy of a passive particle in an active bath
Simin Ye(叶思敏), Peng Liu(刘鹏), Zixuan Wei(魏子轩), Fangfu Ye(叶方富), Mingcheng Yang(杨明成), Ke Chen(陈科). Chin. Phys. B, 2020, 29(5): 058201.
[2] Absorption, quenching, and enhancement by tracer in acetone/toluene laser-induced fluorescence
Guang Chang(常光), Xin Yu(于欣), Jiangbo Peng(彭江波), Yang Yu(于杨), Zhen Cao(曹振), Long Gao(高龙), Minghong Han(韩明宏), and Guohua Wu(武国华). Chin. Phys. B, 2020, 29(12): 124212.
[3] A self-adaptive stochastic resonance system design and study in chaotic interference
Lu Kang (鲁康), Wang Fu-Zhong (王辅忠), Zhang Guang-Lu (张光璐), Fu Wei-Hong (付卫红). Chin. Phys. B, 2013, 22(12): 120202.
[4] Novel high-voltage power device based on self-adaptive interface charge
Wu Li-Juan(吴丽娟), Hu Sheng-Dong(胡盛东), Zhang Bo(张波), and Li Zhao-Ji(李肇基). Chin. Phys. B, 2011, 20(2): 027101.
No Suggested Reading articles found!