Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 044703    DOI: 10.1088/1674-1056/ac373e
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Studies on aluminum powder combustion in detonation environment

Jian-Xin Nie(聂建新), Run-Zhe Kan(阚润哲), Qing-Jie Jiao(焦清介), Qiu-Shi Wang(王秋实), Xue-Yong Guo(郭学永), and Shi Yan(闫石)
State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
Abstract  The combustion mechanism of aluminum particles in a detonation environment characterized by high temperature (in unit 103 K), high pressure (in unit GPa), and high-speed motion (in units km/s) was studied, and a combustion model of the aluminum particles in detonation environment was established. Based on this model, a combustion control equation for aluminum particles in detonation environment was obtained. It can be seen from the control equation that the burning time of aluminum particle is mainly affected by the particle size, system temperature, and diffusion coefficient. The calculation result shows that a higher system temperature, larger diffusion coefficient, and smaller particle size lead to a faster burn rate and shorter burning time for aluminum particles. After considering the particle size distribution characteristics of aluminum powder, the application of the combustion control equation was extended from single aluminum particles to nonuniform aluminum powder, and the calculated time corresponding to the peak burn rate of aluminum powder was in good agreement with the experimental electrical conductivity results. This equation can quantitatively describe the combustion behavior of aluminum powder in different detonation environments and provides technical means for quantitative calculation of the aluminum powder combustion process in detonation environment.
Keywords:  aluminum particle combustion model      aluminum powder      burn rate equation      burning time  
Received:  14 September 2021      Revised:  05 November 2021      Accepted manuscript online:  06 November 2021
PACS:  47.40.Rs (Detonation waves)  
  47.70.Pq (Flames; combustion)  
  47.40.Nm (Shock wave interactions and shock effects)  
  82.33.Vx (Reactions in flames, combustion, and explosions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11772058).
Corresponding Authors:  Jian-Xin Nie     E-mail:  niejx@bit.edu.cn

Cite this article: 

Jian-Xin Nie(聂建新), Run-Zhe Kan(阚润哲), Qing-Jie Jiao(焦清介), Qiu-Shi Wang(王秋实), Xue-Yong Guo(郭学永), and Shi Yan(闫石) Studies on aluminum powder combustion in detonation environment 2022 Chin. Phys. B 31 044703

[1] Vadhe P P, Pawar R B, Sinha R K, Asthana S N and Rao A S 2008 Combust. Explos. Shock Waves 44 461
[2] Nair U R, Sivabalan R, Gore G M, Geetha M, Asthana S N and Singh H 2005 Combust. Explos. Shock Waves 41 121
[3] Xiao W, Chen K, Yang M F, Hong X W, Li H W and Wang B L 2021 Combust. Explos. Shock Waves 57 222
[4] Zhou Z Q, Chen J G, Yuan H Y et al. 2021 J. Appl. Phys. 129 74904
[5] Cook M A, Filler A S, Keyes R T, Partridge W S and Ursenbach W 1957 J. Phys. Chem. 61 189
[6] Wang H, Liu Y, Bai F and Huang F 2021 J. Appl. Phys. 129 215902
[7] Glassman I 1959 Metal combustion processes, Technical Report (Princeton University NJ James Forrestal Research Center)
[8] Friedman R and Maček A 1962 Combust. Flame 6 9
[9] Davis A 1963 Combust. Flame 7 359
[10] Brzustowski T A and Glassman I 1964 Spectroscopic Investigation of Metal Combustion (New York:Heterogeneous Combustion, Academic Press) pp. 41-74
[11] Belyaev A F, Frolov Y V and Korotkov A I 1968 Combust. Explos. Shock Waves 4 182
[12] Law C K 1973 Combust. Sci. Technol. 7 197
[13] Law C and Williams F 1974 12nd Aerospace Sciences Meeting
[14] Beckstead M W 2004 A summary of aluminum combustion (Brigham Young University, Provo Ut)
[15] Tanguay V, Goroshin S, Higgins A J and Zhang F 2009 Combust. Sci. Technol. 181 670
[16] Houim R W 2011 Modeling the Influence of Shock Waves on the Combustion of Aluminum Droplets, Ph.D. Dissertation (University Park, PA:Pennsylvania State University)
[17] Sundaram D S, Yang V and Zarko V E 2015 Combust. Explos. Shock Waves 51 173
[18] Glorian J, Gallier S and Catoire L 2016 Combust. Flame 168 378
[19] Lomba R, Bernard S, Gillard P, Mounaïm-Rousselle C, Halter F, Chauveau C, Tahtouh T and Guézet O 2016 Combust. Sci. Technol. 188 1857
[20] Sundaram D S, Puri P and Yang V 2016 Combust. Flame 169 94
[21] Feng Y, Xia Z, Huang L and Ma L 2018 Combust. Flame 196 35
[22] Storozhev V B and Yermakov A N 2019 Combust. Flame 200 82
[23] Braconnier A, Gallier S, Halter F and Chauveau C 2021 Proc. Combust. Inst. 38 4355
[24] Jiao Q J, Wang Q S, Nie J X, and Pei H B 2019 Chin. Phys. B 28 088201
[25] Zeng L, Jiao Q J, Ren H and Zhou Z Q 2012 Trans. Beijing Inst. Technol. 32 206 (in Chinese)
[26] Anisichkin V F, Gilev S D, Ershov A P, et al. 2002 Proceedings of 12th Symposium on Detonation pp. 237-246
[27] Ershov A P and Satonkina N P 2010 Combust. Flame 157 1022
[28] Hayes B 1964 On Electrical Conductivity in Detonation Products, Technical Report (University of California)
[29] Zhou Z Q, Chen J G, Yuan H Y and Nie J X 2017 Propell. Explos. Pyrot. 42 1401
[30] Zhou Z Q, Nie J X, Zeng L, Jin Z X and Jiao Q J 2016 Propell. Explos. Pyrot. 41 84
[31] Mohan S, Furet L and Dreizin E L 2010 Combust. Flame 157 1356
[32] Sun Y B, and Hui J M and Cao X M 1995 Military mixed explosive (Beijing:The Publishing House of Ordnance Industry) p. 245
[1] Experimental study of the influence of annular nozzle on acoustic characteristics of detonation sound wave generated by pulse detonation engine
Yang Kang(康杨), Ning Li(李宁), Xiao-Long Huang(黄孝龙), and Chun-Sheng Weng(翁春生). Chin. Phys. B, 2022, 31(10): 104701.
[2] In situ measurement on nonuniform velocity distributionin external detonation exhaust flow by analysis ofspectrum features using TDLAS
Xiao-Long Huang(黄孝龙), Ning Li(李宁), Chun-Sheng Weng(翁春生), and Yang Kang(康杨). Chin. Phys. B, 2022, 31(1): 014703.
[3] Effect of transversal concentration gradient on H2-O2 cellular detonation
Cheng Wang(王成), Yi-Xuan Wu(吴易烜), Jin Huang(黄金), Wen-Hu Han(韩文虎), Qing-Guan Song(宋清官). Chin. Phys. B, 2020, 29(6): 060503.
[4] Acoustic characteristics of pulse detonation engine sound propagating in enclosed space
Yang Kang(康杨), Ning Li(李宁), Chun-Sheng Weng(翁春生), Xiao-Long Huang(黄孝龙). Chin. Phys. B, 2020, 29(1): 014703.
[5] Structural response of aluminum core-shell particles in detonation environment
Qing-Jie Jiao(焦清介), Qiu-Shi Wang(王秋实), Jian-Xin Nie(聂建新), Hong-Bo Pei(裴红波). Chin. Phys. B, 2019, 28(8): 088201.
[6] Effects of heat loss and viscosity friction at walls on flame acceleration and deflagration to detonation transition
Jin Huang(黄金), Wenhu Han(韩文虎), Xiangyu Gao(高向宇), Cheng Wang(王成). Chin. Phys. B, 2019, 28(7): 074704.
[7] Acoustic characteristics of pulse detonation engine with ellipsoidal reflector
Yang Kang(康杨), Ning Li(李宁), Chun-Sheng Weng(翁春生), Chuan-Wei Wang(王传位). Chin. Phys. B, 2018, 27(10): 104703.
[8] Theoretical analysis on deflagration-to-detonation transition
Yun-Feng Liu(刘云峰), Huan Shen(沈欢), De-Liang Zhang(张德良), Zong-Lin Jiang(姜宗林). Chin. Phys. B, 2018, 27(8): 084703.
[9] Effect of actuating frequency on plasma assisted detonation initiation
Si-Yin Zhou(周思引), Xue-Ke Che(车学科), Di Wang(王迪), Wan-Sheng Nie(聂万胜). Chin. Phys. B, 2018, 27(2): 025208.
[10] Effect of the Al/O ratio on the Al reaction of aluminized RDX-based explosives
Qian Zhao(赵倩), Jian-Xin Nie(聂建新), Wei Zhang(张伟), Qiu-Shi Wang(王秋实), Qing-Jie Jiao(焦清介). Chin. Phys. B, 2017, 26(5): 054502.
[11] Three-dimensional detonation cellular structures in rectangular ducts using an improved CESE scheme
Yang Shen(沈洋), Hua Shen(申华), Kai-Xin Liu(刘凯欣), Pu Chen(陈 璞), De-Liang Zhang(张德良). Chin. Phys. B, 2016, 25(11): 114702.
[12] Critical deflagration waves leading to detonation onset under different boundary conditions
Lin Wei (林伟), Zhou Jin (周进), Fan Xiao-Hua (范孝华), Lin Zhi-Yong (林志勇). Chin. Phys. B, 2015, 24(1): 014701.
[13] Particle path tracking method in two-and three-dimensional continuously rotating detonation engines
Zhou Rui (周蕊), Wu Dan (武丹), Liu Yan (刘岩), Wang Jian-Ping (王健平). Chin. Phys. B, 2014, 23(12): 124704.
[14] Existence of a Hartmann layer in the peristalsis of Sisko fluid
Saleem Asghar, Tayyaba Minhas, Aamir Ali. Chin. Phys. B, 2014, 23(5): 054702.
[15] Experimental investigations of detonation initiation by hot jets in supersonic premixed flows
Han Xu (韩旭), Zhou Jin (周进), Lin Zhi-Yong (林志勇). Chin. Phys. B, 2012, 21(12): 124702.
No Suggested Reading articles found!