Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 097310    DOI: 10.1088/1674-1056/27/9/097310
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Transport spectroscopy through dopant atom array in silicon junctionless nanowire transistors

Xiao-Song Zhao(赵晓松)1,2, Wei-Hua Han(韩伟华)1,2, Yang-Yan Guo(郭仰岩)1,2, Ya-Mei Dou(窦亚梅)1,2, Fu-Hua Yang(杨富华)1,2,3
1 Engineering Research Center for Semiconductor Integrated Technology, Beijing Engineering Center of Semiconductor Micro-Nano Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100083, China;
3 State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  

We demonstrate electron transport spectroscopy through a dopant atom array in n-doped silicon junctionless nanowire transistors within a temperature range from 6 K to 250 K. Several current steps are observed at the initial stage of the transfer curves below 75 K, which result from the electron transport from Hubbard bands to one-dimensional conduction band. The current-off voltages in the transfer curves have a strikingly positive shift below 20 K and a negative shift above 20 K due to the electrostatic screening induced by the ionized dopant atoms. There exists the minimum electron mobility at a critical temperature of 20 K, resulting from the interplay between thermal activation and impurity scattering. Furthermore, electron transport behaviors change from hopping conductance to thermal activation conductance at the temperature of 30 K.

Keywords:  ionized dopant atom      junctionless nanowire transistor      hopping      thermal activation      current-off voltage  
Received:  18 May 2018      Revised:  06 July 2018      Accepted manuscript online: 
PACS:  73.63.-b (Electronic transport in nanoscale materials and structures)  
  81.07.Gf (Nanowires)  
  85.30.Tv (Field effect devices)  
Fund: 

Project supported by the National Key R&D Program of China (Grant No. 2016YFA0200503) and the National Natural Science Foundation of China (Grant No. 61327813).

Corresponding Authors:  Wei-Hua Han, Fu-Hua Yang     E-mail:  weihua@semi.ac.cn;fhyang@semi.ac.cn

Cite this article: 

Xiao-Song Zhao(赵晓松), Wei-Hua Han(韩伟华), Yang-Yan Guo(郭仰岩), Ya-Mei Dou(窦亚梅), Fu-Hua Yang(杨富华) Transport spectroscopy through dopant atom array in silicon junctionless nanowire transistors 2018 Chin. Phys. B 27 097310

[1] Colinge J P, Lee C W, Afzalian A, Akhavan N D, Yan R, Ferain I, Razavi P, O'Neill B, Blake A, White M, Kelleher A M, McCarthy B and Murphy R 2010 Nat. Nanotechnol. 5 225
[2] Wang B, Zhang H M, Hu H Y, Hu H Y and Shi X W 2018 Chin. Phys. B 27 067402
[3] Liu F Y, Liu H Z, Liu B W and Guo Y F 2016 Chin. Phys. B 25 047305
[4] Nazarov A N and Rudenko T E 2015 Int. Semiconductor Conf. 27
[5] Yi K S, Trivedi K, Floresca H C, Yuk H, Hu W and Kim M J 2011 Nano Lett. 11 5465
[6] Mirza M M, Schupp F J, Mol J A, Maclaren D A, Briggs G A D and Paul D J 2017 Sci. Rep. 7 3004
[7] Shinada T, Okamoto S, Kobayashi T and Ohdomari I 2005 Nature 437 1128
[8] Li Y, Yu S M, Hwang J R and Yang F L 2008 IEEE Trans. Electron. Devices 55 1449
[9] Duan L, Hu F and Ding J W 2011 Acta Phys. Sin. 60 117201 (in Chineses)
[10] Tabe M, Moraru D, Ligowski M, Anwar M, Jablonski R, Ono Y and Mizuno T 2010 Phys. Rev. Lett. 105 016803
[11] Sellier H, Lansbergen G P, Caro J, Rogge S, Collaert N, Ferain I, Jurczak M and Biesemans S 2006 Phys. Rev. Lett. 97 206805
[12] Han W H, Wang H, Yang X, Ma L H, Hong W T, Lyu Q F and Yang F H 2014 12th International Conference on Solid-State and Integrated Circuit Technology, October 28-31 2014 Guilin, China, p. 1
[13] Tyszka K, Moraru D, Samanta A, Mizuno T, Jabłoński R and Tabe M 2015 Appl. Phys. E 8 094202
[14] Samanta A, Muruganathan M, Hori M, Ono Y, Mizuta H and Tabe M 2017 Appl. Phys. Lett. 110 093107
[15] Dong J C, Li H, Sun F W, Zhang K and Li Y F 2011 J. Phys. Chem. C 115 13901
[16] Zhang X H, Dong J C, Wang Y, Li L and Li H 2013 J. Phys. Chem. C 117 12958
[17] Guan X M and Yu Z P 2005 Chin. Phys. Lett. 22 2651
[18] Wang H, Han W H, Ma L H, Li X M and Yang F H 2014 Chin. Phys. B 23 088107
[19] Ma L H, Han W H, Wang H, Yang X and Yang F H 2015 IEEE Electron Device Lett. 36 941
[20] Morimoto K, Hirai Y, Yuki K and Morita K 1996 Jpn. J. Appl. Phys. 35 853
[21] Colinge J P, Xiong W, Cleavelin C R, Schulz T, Schrüfer K, Matthews K and Patrunoolinge P 2006 IEEE Electron Device Lett. 27 120
[22] Li X M, Han W H, Wang H, Ma L H, Zhang Y, Du Y D and Yang F H 2013 Appl. Phys. Lett. 102 223507
[23] Ye L X 2012 Semiconductor Physics (Vol. 1) (2nd Edn.) (Beijing:Higher Education Press) pp. 118-121 (in Chinese)
[24] Diarra M, Niquet Y M, Delerue C and Allan G 2007 Phys. Rev. B 75 045301
[25] Joo M K, Mouis M, Jeon D Y, Barraud S, Park S J, Kim G T and Ghibaudo G 2014 Semicond. Sci. Technol. 29 045024
[26] de M, Pavanello M A, Trevisoli R D, Doria R T and Colinge J P 2011 IEEE Electron Device Lett. 32 1322
[27] Trevisoli R D, Doria R T, de M and Pavanello M A 2011 Semicond. Sci. Technol. 26 105009
[28] Hong B H, Jung Y C, Rieh J S, Hwang S W, Cho K H, Yeo K H, Suk S D, Yeoh Y Y, Li M, Kim D W, Park D, Oh K S and Lee W S 2009 IEEE Trans. Nanotechnol. 8 713
[29] Ma L H, Han W H, Wang H, Hong W T, Lyu Q F, Yang X and Yang F H 2015 J. Appl. Phys. 117 034505
[30] Mott N F 1968 Rev. Mod. Phys. 40 677
[31] Ye L X 2009 Semiconductor Physics, (Vol. 2) (2nd Edn.) (Beijing:Higher Education Press) pp. 540-542 (in Chinese)
[1] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[2] Exact solutions of non-Hermitian chains with asymmetric long-range hopping under specific boundary conditions
Cui-Xian Guo(郭翠仙) and Shu Chen(陈澍). Chin. Phys. B, 2022, 31(1): 010313.
[3] Observation of source/drain bias-controlled quantum transport spectrum in junctionless silicon nanowire transistor
Yang-Yan Guo(郭仰岩), Wei-Hua Han(韩伟华), Xiao-Di Zhang(张晓迪), Jun-Dong Chen(陈俊东), and Fu-Hua Yang(杨富华). Chin. Phys. B, 2022, 31(1): 017701.
[4] Edge states enhanced by long-range hopping: An analytical study
Huiping Wang(王会平), Li Ren(任莉), Liguo Qin(秦立国), and Yueyin Qiu(邱岳寅). Chin. Phys. B, 2021, 30(10): 107301.
[5] Coulomb blockade and hopping transport behaviors of donor-induced quantum dots in junctionless transistors
Liu-Hong Ma(马刘红), Wei-Hua Han(韩伟华), Fu-Hua Yang(杨富华). Chin. Phys. B, 2020, 29(3): 038104.
[6] Temperature-dependent subband mobility characteristics in n-doped silicon junctionless nanowire transistor
Ya-Mei Dou(窦亚梅), Wei-Hua Han(韩伟华), Yang-Yan Guo(郭仰岩), Xiao-Song Zhao(赵晓松), Xiao-Di Zhang(张晓迪), Xin-Yu Wu(吴歆宇), Fu-Hua Yang(杨富华). Chin. Phys. B, 2019, 28(6): 066804.
[7] Phase diagram of interacting fermionic two-leg ladder with pair hopping
Wan-Li Liu(刘万里), Tian-Zhong Yuan(原天忠), Zhi Lin(林志), Wei Yan(闫伟). Chin. Phys. B, 2019, 28(2): 020303.
[8] Observation of hopping transitions for delocalized electrons by temperature-dependent conductance in siliconjunctionless nanowire transistors
Yang-Yan Guo(郭仰岩), Wei-Hua Han(韩伟华), Xiao-Song Zhao(赵晓松), Ya-Mei Dou(窦亚梅), Xiao-Di Zhang(张晓迪), Xin-Yu Wu(吴歆宇), Fu-Hua Yang(杨富华). Chin. Phys. B, 2019, 28(10): 107303.
[9] Influence of dopant concentration on electrical quantum transport behaviors in junctionless nanowire transistors
Liu-Hong Ma(马刘红), Wei-Hua Han(韩伟华), Xiao-Song Zhao(赵晓松), Yang-Yan Guo(郭仰岩), Ya-Mei Dou(窦亚梅), Fu-Hua Yang(杨富华). Chin. Phys. B, 2018, 27(8): 088106.
[10] Molecular dynamics simulations on the dynamics of two-dimensional rounded squares
Zhang-lin Hou(侯章林), Ying Ju(句颖), Yi-wu Zong(宗奕吾), Fang-fu Ye(叶方富), Kun Zhao(赵坤). Chin. Phys. B, 2018, 27(8): 088203.
[11] Effect of substitution group on dielectric properties of 4H-pyrano [3, 2-c] quinoline derivatives thin films
H M Zeyada, F M El-Taweel, M M El-Nahass, M M El-Shabaan. Chin. Phys. B, 2016, 25(7): 077701.
[12] Electronic transport properties of silicon junctionless nanowire transistors fabricated by femtosecond laser direct writing
Liu-Hong Ma(马刘红), Wei-Hua Han(韩伟华), Hao Wang(王昊), Qi-feng Lyu(吕奇峰), Wang Zhang(张望), Xiang Yang(杨香), Fu-Hua Yang(杨富华). Chin. Phys. B, 2016, 25(6): 068103.
[13] Electric-field-dependent charge delocalization from dopant atoms in silicon junctionless nanowire transistor
Hao Wang(王昊), Wei-Hua Han(韩伟华), Xiao-Song Zhao(赵晓松), Wang Zhang(张望), Qi-Feng Lyu(吕奇峰), Liu-Hong Ma(马刘红), Fu-Hua Yang(杨富华). Chin. Phys. B, 2016, 25(10): 108102.
[14] Electronic mobility in the high-carrier-density limit ofion gel gated IDTBT thin film transistors
Bao Bei (包蓓), Shao Xian-Yi (邵宪一), Tan Lu (谭璐), Wang Wen-He (王文河), Wu Yue-Shen (吴越珅), Wen Li-Bin (文理斌), Zhao Jia-Qing (赵家庆), Tang Wei (唐伟), Zhang Wei-Min (张为民), Guo Xiao-Jun (郭小军), Wang Shun (王顺), Liu Ying (刘荧). Chin. Phys. B, 2015, 24(9): 098103.
[15] Simulation study on characteristics of long-range interaction in randomly asymmetric exclusion process
Zhao Shi-Bo (赵仕波), Liu Ming-Zhe (刘明哲), Yang Lan-Ying (杨兰英). Chin. Phys. B, 2015, 24(4): 040504.
No Suggested Reading articles found!