Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 050309    DOI: 10.1088/1674-1056/22/5/050309
GENERAL Prev   Next  

Quantum steganography with large payload based on dense coding and entanglement swapping of Greenberger-Horne-Zeilinger states

Ye Tian-Yu (叶天语), Jiang Li-Zhen (蒋丽珍)
College of Information & Electronic Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
Abstract  A quantum steganography protocol with a large payload is proposed based on the dense coding and the entanglement swapping of the Greenberger-Horne-Zeilinger (GHZ) states. Its super quantum channel is formed by building up a hidden channel within the original quantum secure direct communication (QSDC) scheme. Based on the original QSDC, secret messages are transmitted by integrating the dense coding and the entanglement swapping of the GHZ states. The capacity of the super quantum channel achieves six bits per round covert communication, much higher than the previous quantum steganography protocols. Its imperceptibility is good, since the information and the secret messages can be regarded to be random or pseudo-random. Moreover, its security is proved to be reliable.
Keywords:  quantum steganography      quantum secure direct communication      dense coding      entanglement swapping  
Received:  22 November 2012      Revised:  27 December 2012      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60972071) and the Natural Science Foundation of Zhejiang Province, China (Grant Nos. Y6100421 and LQ12F02012).
Corresponding Authors:  Ye Tian-Yu     E-mail:  flystu008@yahoo.com.cn

Cite this article: 

Ye Tian-Yu (叶天语), Jiang Li-Zhen (蒋丽珍) Quantum steganography with large payload based on dense coding and entanglement swapping of Greenberger-Horne-Zeilinger states 2013 Chin. Phys. B 22 050309

[1] Bennett C H and Brassard G 1984 International Conference on Computers, Systems & Signal Processing, December 10-19, 1984 Bangalore India, p. 175
[2] Bennett C H, Brassard G and Mermin N D 1992 Phys. Rev. Lett. 68 557
[3] Cabell A 2000 Phys. Rev. Lett. 85 5635
[4] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[5] Beige A, Englert B G and Kurtsiefer C 2002 Acta Physica Polonica A 101 357
[6] Bostrom K and Felbinger T 2002 Phys. Rev. Lett. 89 187902
[7] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
[8] Cai Q Y and Li B W 2004 Phys. Rev. A 69 054301
[9] Wang C, Deng F G and Long G L 2005 Opt. Commun. 253 15
[10] Gao T, Yan F L and Wang Z X 2005 Chin. Phys. Lett. 22 2473
[11] Sun Y, Wen Q Y and Zhu F C 2008 Chin. Phys. Lett. 25 828
[12] Chen X B, Wang T Y, Du J Z, Wen Q Y and Zhu F C 2008 Int. J. Quant. Inform. 6 543
[13] Chen X B, Wen Q Y, Guo F Z, Sun Y, Xu G and Zhu F C 2008 Int. J. Quant. Inform. 6 899
[14] Huang W, Wen Q Y, Jia H Y, Qin S J and Gao F 2012 Chin. Phys. B 21 100308
[15] Hillery M, Buzek V and Berthiaume A 1999 Phys. Rev. A 59 1829
[16] Guo G P and Guo G C 2003 Phys. Lett. A 310 247
[17] Chen X B, Yang S, Su Y and Yang Y X 2012 Phys. Scr. 86 055002
[18] Chen X B, Niu X X, Zhou X J and Yang Y X 2013 Quantum. Inf. Process 12 365
[19] Gea-Banacloche J 2002 J. Math. Phys. 43 4531
[20] Worley III G G 2004 arXiv: ph/0401041v2
[21] Martin K 2007 IH2007 LNCS. 4567 32
[22] Liao X, Wen Q Y, Sun Y and Zhang J 2010 J. Syst. Software 83 1801
[23] Qu Z G, Chen X B, Zhou X J, Niu X X and Yang Y X 2010 Opt. Commun. 283 4782
[24] Lee H J, Ahn D and Hwang S W 2002 Phys. Rev. A 66 024304
[25] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[1] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
[2] Measurement-device-independent one-step quantum secure direct communication
Jia-Wei Ying(应佳伟), Lan Zhou(周澜), Wei Zhong(钟伟), and Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2022, 31(12): 120303.
[3] Hierarchical simultaneous entanglement swapping for multi-hop quantum communication based on multi-particle entangled states
Guang Yang(杨光, Lei Xing(邢磊), Min Nie(聂敏), Yuan-Hua Liu(刘原华), and Mei-Ling Zhang(张美玲). Chin. Phys. B, 2021, 30(3): 030301.
[4] Dense coding capacity in correlated noisy channels with weak measurement
Jin-Kai Li(李进开), Kai Xu(徐凯), and Guo-Feng Zhang(张国锋). Chin. Phys. B, 2021, 30(11): 110302.
[5] Quantum teleportation of particles in an environment
Lu Yang(杨璐), Yu-Chen Liu(刘雨辰), Yan-Song Li(李岩松). Chin. Phys. B, 2020, 29(6): 060301.
[6] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
[7] Two-step quantum secure direct communication scheme with frequency coding
Xue-Liang Zhao(赵学亮), Jun-Lin Li(李俊林), Peng-Hao Niu(牛鹏皓), Hong-Yang Ma(马鸿洋), Dong Ruan(阮东). Chin. Phys. B, 2017, 26(3): 030302.
[8] Quantum dual signature scheme based on coherent states with entanglement swapping
Jia-Li Liu(刘佳丽), Rong-Hua Shi(施荣华), Jin-Jing Shi(石金晶), Ge-Li Lv(吕格莉), Ying Guo(郭迎). Chin. Phys. B, 2016, 25(8): 080306.
[9] Cryptanalysis of quantum broadcast communication and authentication protocol with a one-time pad
Ya Cao(曹雅), Fei Gao(高飞). Chin. Phys. B, 2016, 25(11): 110305.
[10] A novel scheme of hybrid entanglement swapping and teleportation using cavity QED in the small and large detuning regimes and quasi-Bell state measurement method
R Pakniat, M K Tavassoly, M H Zandi. Chin. Phys. B, 2016, 25(10): 100303.
[11] Effects of intrinsic decoherence on various correlations and quantum dense coding in a two superconducting charge qubit system
Wang Fei (王飞), Maimaitiyiming-Tusun (麦麦提依明·吐孙), Parouke-Paerhati (帕肉克·帕尔哈提), Ahmad-Abliz (艾合买提·阿不力孜). Chin. Phys. B, 2015, 24(9): 090307.
[12] An optimized encoding method for secure key distribution by swapping quantum entanglement and its extension
Gao Gan (高干). Chin. Phys. B, 2015, 24(8): 080305.
[13] A novel quantum information hiding protocol based on entanglement swapping of high-level Bell states
Xu Shu-Jiang (徐淑奖), Chen Xiu-Bo (陈秀波), Wang Lian-Hai (王连海), Niu Xin-Xin (钮心忻), Yang Yi-Xian (杨义先). Chin. Phys. B, 2015, 24(5): 050306.
[14] Robust quantum secure direct communication and authentication protocol against decoherence noise based on six-qubit DF state
Chang Yan (昌燕), Zhang Shi-Bin (张仕斌), Yan Li-Li (闫丽丽), Han Gui-Hua (韩桂华). Chin. Phys. B, 2015, 24(5): 050307.
[15] Quantum communication for satellite-to-ground networks with partially entangled states
Chen Na (陈娜), Quan Dong-Xiao (权东晓), Pei Chang-Xing (裴昌幸), Yang-Hong (杨宏). Chin. Phys. B, 2015, 24(2): 020304.
No Suggested Reading articles found!