Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 050310    DOI: 10.1088/1674-1056/22/5/050310
GENERAL Prev   Next  

Several teleportation schemes of an arbitrary unknown multi-particle state via different quantum channels

Peng Jia-Yin (彭家寅)a b, Mo Zhi-Wen (莫智文)a
a School of Mathematics and Software Science, Sichuan Normal University, Chengdu 610066, China;
b School of Mathematics and Information Science, Neijiang Normal University, Neijiang 641100, China
Abstract  We first provide four new schemes for two-party quantum teleportation of an arbitrary unknown multi-particle state by using three-, four- and five-particle states as the quantum channel, respectively. The successful probability and fidelity of the four schemes reach 1. In the first two schemes, the receiver can only apply one of the unitary transformations to reconstruct the original state, making it easier for these two schemes to be directly realized. In the third and fourth schemes, the sender can preform Bell-state measurements instead of multipartite entanglement measurements of the existing similar schemes, which makes real experiments more suitable. It is found that the last three schemes may become tripartite controlled teleportation schemes of teleporting an arbitrary multi-particle state after a simple modification. Finally, we present a new scheme for three-party sharing an arbitrary unknown multi-particle state. In this scheme, the sender first shares three three-particle GHZ states with two agents. After setting up the secure quantum channel, an arbitrary unknown multi-particle state can be perfectly teleported if the sender performs three Bell-state measurements, and either of two receivers operates an appropriate unitary transformation to obtain the original state with the help of other receiver's three single-particle measurements. The successful probability and fidelity of this scheme also reach 1. It is demonstrated that this scheme can be generalized easily to the case of sharing an arbitrary unknown multi-particle state among several agents.
Keywords:  quantum information      quantum teleportation      quantum state sharing      multi-particle state  
Received:  22 August 2012      Revised:  02 November 2012      Accepted manuscript online: 
PACS:  03.67.Hk (Quantum communication)  
  03.67.Dd (Quantum cryptography and communication security)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11071178).
Corresponding Authors:  Peng Jia-Yin     E-mail:  pengjiayin62226@yahoo.com.cn

Cite this article: 

Peng Jia-Yin (彭家寅), Mo Zhi-Wen (莫智文) Several teleportation schemes of an arbitrary unknown multi-particle state via different quantum channels 2013 Chin. Phys. B 22 050310

[1] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wooters W K 1993 Phys. Rev. Lett. 70 1895
[2] Ekert A K 1991 Phys. Rev. Lett. 67 661
[3] Bennett C H 1992 Phys. Rev. Lett. 68 3121
[4] Zhang Y 1998 Chin. Phys. Lett. 15 238
[5] Barenco A 1995 Phys. Rev. Lett. 74 4083
[6] Cirac J I and Zoller P 1995 Phys. Rev. Lett. 74 4091
[7] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 68 2881
[8] Chen X B, Du J Z, Wen Q Y and Zhu F C 2008 Chin. Phys. B 17 771
[9] Yang Y G, Cao W F and Wen Q Y 2010 Chin. Phys. B 19 050306
[10] Zhang Z J, Liu Y M and Wang D 2007 Phys. Lett. A 372 28
[11] Wu X, Chen Z H and Zhang Y 2011 Chin. Phys. B 20 060306
[12] Jiang M, Li H, Zhang Z K and Zeng J 2011 Physica A 390 760
[13] Dai H Y, Zhang M and Li C Z 2004 Phys. Lett. A 323 360
[14] Yang Y G and Wen Q Y 2008 Chin. Phys. B 17 419
[15] Li Y B and Hou K 2010 Int. J. Quantum Inf. 8 969
[16] Wu J 2010 Int. J. Theor. Phys. 49 324
[17] Nie Y Y, Sang M H, Li Y H and Liu J C 2011 Int. J. Theor. Phys. 50 1367
[18] Deng F G, Li X H and Li C Y 2005 Phys. Rev. A 72 044301
[19] Yuan H, Liu Y M and Zhang W 2008 J. Phys. B 41 145506
[20] Xue Z Y 2006 Int. J. Quantum Inf. 4 749
[21] Zhang Z J and Cheung C Y 2008 J. Phys. B 41 015503
[22] Markham D and Samders B C 2008 Phys. Rev. A 72 042309
[23] Shangguan L Y, Sun H X, Chen X B, Wen Q Y and Zhu F C 2009 Acta Phys. Sin. 58 1371 (in Chinese)
[24] Zha X W 2007 Acta Phys. Sin. 56 1875 (in Chinese)
[25] Chen X B, Wen Q Y and Sun Z X 2010 Chin. Phys. B 19 010303
[26] Nie Y Y, Li Y H, Liu J C and Sang M H 2011 Quantum Inf. Proc. 10 603
[27] Hou K, Li Y B and Shi S H 2010 Opt. Commun. 283 1961
[28] Muralidharan S and Panigrahi P K 2008 Phys. Rev. A 77 032321
[29] Choudhury S, Muralidharan S and Panigrahi P K 2009 J. Phys. A 42 115303
[30] Xiu X M, Dong L and Gao Y J 2007 Commun. Theor. Phys. 47 625
[31] Muralidharan S and Panigrahi P K 2008 Phys. Rev. A 78 062333
[32] Jiang M, Li H, Zhang Z K and Zeng J 2011 Physica A 390 760
[33] Jiang M and Dong D Y 2012 Quantum Inf. Proc.
[34] Zha X W 2008 J. Chin. Univ. Post. Telecommun. 15 60
[1] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[2] Probabilistic quantum teleportation of shared quantum secret
Hengji Li(李恒吉), Jian Li(李剑), and Xiubo Chen(陈秀波). Chin. Phys. B, 2022, 31(9): 090303.
[3] Relativistic motion on Gaussian quantum steering for two-mode localized Gaussian states
Xiao-Long Gong(龚小龙), Shuo Cao(曹硕), Yue Fang(方越), and Tong-Hua Liu(刘统华). Chin. Phys. B, 2022, 31(5): 050402.
[4] A rational quantum state sharing protocol with semi-off-line dealer
Hua-Li Zhang(张花丽), Bi-Chen Che(车碧琛), Zhao Dou(窦钊), Yu Yang(杨榆), and Xiu-Bo Chen(陈秀波). Chin. Phys. B, 2022, 31(5): 050309.
[5] Experimental realization of quantum controlled teleportation of arbitrary two-qubit state via a five-qubit entangled state
Xiao-Fang Liu(刘晓芳), Dong-Fen Li(李冬芬), Yun-Dan Zheng(郑云丹), Xiao-Long Yang(杨小龙), Jie Zhou(周杰), Yu-Qiao Tan(谭玉乔), and Ming-Zhe Liu(刘明哲). Chin. Phys. B, 2022, 31(5): 050301.
[6] Quantum watermarking based on threshold segmentation using quantum informational entropy
Jia Luo(罗佳), Ri-Gui Zhou(周日贵), Wen-Wen Hu(胡文文), YaoChong Li(李尧翀), and Gao-Feng Luo(罗高峰). Chin. Phys. B, 2022, 31(4): 040302.
[7] Quantum storage of single photons with unknown arrival time and pulse shapes
Yu You(由玉), Gong-Wei Lin(林功伟), Ling-Juan Feng(封玲娟), Yue-Ping Niu(钮月萍), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2021, 30(8): 084207.
[8] Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process
Jing Wang(王静), Chun-Hui Zhang(张春辉), Jing-Yang Liu(刘靖阳), Xue-Rui Qian(钱雪瑞), Jian Li(李剑), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(7): 070304.
[9] Controlled quantum teleportation of an unknown single-qutrit state in noisy channels with memory
Shexiang Jiang(蒋社想), Bao Zhao(赵宝), and Xingzhu Liang(梁兴柱). Chin. Phys. B, 2021, 30(6): 060303.
[10] Fast achievement of quantum state transfer and distributed quantum entanglement by dressed states
Liang Tian(田亮), Li-Li Sun(孙立莉), Xiao-Yu Zhu(朱小瑜), Xue-Ke Song(宋学科), Lei-Lei Yan(闫磊磊), Er-Jun Liang(梁二军), Shi-Lei Su(苏石磊), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(5): 050306.
[11] Quantum fluctuation of entanglement for accelerated two-level detectors
Si-Xuan Zhang(张思轩), Tong-Hua Liu(刘统华), Shuo Cao(曹硕), Yu-Ting Liu(刘宇婷), Shuai-Bo Geng(耿率博), Yu-Jie Lian(连禹杰). Chin. Phys. B, 2020, 29(5): 050402.
[12] Error-detected single-photon quantum routing using a quantum dot and a double-sided microcavity system
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), Shou Zhang(张寿). Chin. Phys. B, 2019, 28(2): 020301.
[13] A method to calculate effective Hamiltonians in quantum information
Jun-Hang Ren(任军航), Ming-Yong Ye(叶明勇), Xiu-Min Lin(林秀敏). Chin. Phys. B, 2019, 28(11): 110305.
[14] Effects of the Casimir force on the properties of a hybrid optomechanical system
Yi-Ping Wang(王一平), Zhu-Cheng Zhang(张筑城), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2019, 28(1): 014202.
[15] Arbitrated quantum signature scheme with continuous-variable squeezed vacuum states
Yan-Yan Feng(冯艳艳), Rong-Hua Shi(施荣华), Ying Guo(郭迎). Chin. Phys. B, 2018, 27(2): 020302.
No Suggested Reading articles found!