Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(4): 047802    DOI: 10.1088/1674-1056/22/4/047802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Analysis of frequency selective surface absorbers via a novel equivalent circuit method

Liu Li-Guo (刘立国), Wu Wei-Wei (吴微微), Mo Jin-Jun (莫锦军), Fu Yun-Qi (付云起), Yuan Nai-Chang (袁乃昌)
College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073, China
Abstract  An equivalent circuit (EC) method for absorbers design is proposed in this paper. Without using full-wave analysis, the EC method can predict the performance of the absorbers. This method is employed to synthesize broadband absorbers by inserting the resistors respectively into the single- and double-square loops structures, then two different prototypes with broadband absorbing frequency bands are manufactured and measured. By comparisons with the results both by using the full-wave analysis and by the measurements, the correctness of the new EC method is verified. Some factors which affect the absorbing bandwidth are also investigated. Due to its fast and accurate characteristics, the EC method which can be theoretically applied to arbitrary FSS is a good candidate for broadband design of the absorbers.
Keywords:  frequency selective surfaces      equivalent circuit      absorber  
Received:  07 October 2012      Revised:  02 December 2012      Accepted manuscript online: 
PACS:  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
Fund: Project supported by the Science Foundation for New Century Excellent Talents in University of China (Grant No. NCET-10-0894).
Corresponding Authors:  Liu Li-Guo     E-mail:  liguoliu99@gmail.com

Cite this article: 

Liu Li-Guo (刘立国), Wu Wei-Wei (吴微微), Mo Jin-Jun (莫锦军), Fu Yun-Qi (付云起), Yuan Nai-Chang (袁乃昌) Analysis of frequency selective surface absorbers via a novel equivalent circuit method 2013 Chin. Phys. B 22 047802

[1] Agrawal V and Imbriale W 1979 IEEE Trans. Antennas Propag. 27 466
[2] Wu T K 1994 IEEE Trans. Antennas Propag. 42 2369
[3] Munk B A 2000 Frequency Slective Surfaces -- Theory and Design (New York: John Wiley & Sons)
[4] Gustafsson M and Karlsson A 2006 IEEE Trans. Antennas Propag. 54 1897
[5] Saleh A A M and Semplak R A 1976 IEEE Trans. Antennas Propag. 24 780
[6] Pelton E L and Munk B A 1974 IEEE Trans. Antennas Propag. 22 799
[7] Sievenpiper D, Zhang L, Broas R F J, Alexopolous N G and Yablonovitch E 1999 IEEE Trans. Microwave Theory Techniques 47 2059
[8] Costa F, Gempvesi S and Monorchio A 2009 IEEE Antennas Wireless & Propagation Letters 8 1341
[9] Landy N I, Sajuyigbe S, Mock J J, Smith D R and Padilla W J 2008 Phys. Rev. Lett. 100 207402
[10] Wang X D, Ye Y H, Ma J and Jiang M P 2010 Chin. Phys. Lett. 27 94101
[11] Yang Y J, Huang Y J, Wen G J, Zhong J P, Sun H B and Oghenemuero G 2012 Chin. Phys. B 21 038501
[12] Gu C, Qu S B, Pei Z B, Xu Z, Liu J and Gu W 2011 Chin. Phys. B 20 017801
[13] Yuan J and Shen Z X 2007 IEEE Antennas Wireless & Propagation Lett. 6 1536
[14] Costa F, Monorchio A and Manara G 2012 IEEE Trans. Antennas Propag. 54 35
[15] Costa F and Monorchio A 2012 IEEE Trans. Antennas Propag. 60 2740
[16] Shen X P, Cui T J, Zhao J M, Ma H F, Jiang W X and Li H 2011 Opt. Express 19 9401
[17] Marcuvitz N 1951 Waveguide Handbook (New York: McGraw-Hill)
[18] Anderson I 1975 Bell System Technical Journal 54 1725
[19] Langley R J and Drinkwater A J 1982 IEE Proceedings H -- Microwaves Optics and Antennas 129 1
[20] Langley R J and Parker E A 1982 Electron. Lett. 18 294
[21] Langley R J and Parker E A 1983 Electron. Lett. 19 675
[22] Lee C K and Langley R J 1985 IEE Proceedings H -- Microwaves Optics and Antennas 132 395
[23] Yilmaz A E and Kuzuoglu M 2009 Radio Engineering 18 95
[24] Renings A, Otto S, Caloz C, Lauer A, Bilgic W and Waldow P 2006 Int. J. Numer. Model. 19 141
[25] Rennings A, Otto S, Lauer A, Caloz C and Waldow P 2006 Proc. European Microwave Association 2 71
[26] Wu X H, Kishk A A and Glisson A W 2006 IEEE Trans. Antennas Propag. 54 2731
[27] Costa F and Monorchio A 2011 PIER 111 467
[1] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[2] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[3] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[4] Sequential generation of self-starting diverse operations in all-fiber laser based on thulium-doped fiber saturable absorber
Pei Zhang(张沛), Kaharudin Dimyati, Bilal Nizamani, Mustafa M. Najm, and S. W. Harun. Chin. Phys. B, 2022, 31(6): 064204.
[5] Broadband low-frequency acoustic absorber based on metaporous composite
Jia-Hao Xu(徐家豪), Xing-Feng Zhu(朱兴凤), Di-Chao Chen(陈帝超), Qi Wei(魏琦), and Da-Jian Wu(吴大建). Chin. Phys. B, 2022, 31(6): 064301.
[6] Simulated and experimental studies of a multi-band symmetric metamaterial absorber with polarization independence for radar applications
Hema O. Ali, Asaad M. Al-Hindawi, Yadgar I. Abdulkarim, Ekasit Nugoolcharoenlap, Tossapol Tippo,Fatih Özkan Alkurt, Olcay Altıntaş, and Muharrem Karaaslan. Chin. Phys. B, 2022, 31(5): 058401.
[7] Extrinsic equivalent circuit modeling of InP HEMTs based on full-wave electromagnetic simulation
Shi-Yu Feng(冯识谕), Yong-Bo Su(苏永波), Peng Ding(丁芃), Jing-Tao Zhou(周静涛), Song-Ang Peng(彭松昂), Wu-Chang Ding(丁武昌), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(4): 047303.
[8] A flexible ultra-broadband metamaterial absorber working on whole K-bands with polarization-insensitive and wide-angle stability
Tao Wang(汪涛), He-He He(何贺贺), Meng-Di Ding(丁梦迪), Jian-Bo Mao(毛剑波), Ren Sun(孙韧), and Lei Sheng(盛磊). Chin. Phys. B, 2022, 31(3): 037804.
[9] A pure dielectric metamaterial absorber with broadband and thin thickness based on a cross-hole array structure
Wenbo Cao(曹文博), Youquan Wen(温又铨), Chao Jiang(姜超), Yantao Yu(余延涛), Yiyu Wang(王艺宇), Zheyipei Ma(麻哲乂培), Zixiang Zhao(赵子翔), Lanzhi Wang(王兰志), and Xiaozhong Huang(黄小忠). Chin. Phys. B, 2022, 31(11): 117801.
[10] Zinc-oxide/PDMS-clad tapered fiber saturable absorber for passively mode-locked erbium-doped fiber laser
F D Muhammad, S A S Husin, E K Ng, K Y Lau, C A C Abdullah, and M A Mahdi. Chin. Phys. B, 2021, 30(5): 054204.
[11] Theoretical analysis and experimental validation of radial cascaded composite ultrasonic transducer
Xiao-Yu Wang(王晓宇), Zhi-Xin Yu(余芷欣), Jing Hu(胡静), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2021, 30(4): 040701.
[12] Multi-layer structures including zigzag sculptured thin films for corrosion protection of AISI 304 stainless steel
Fateme Abdi. Chin. Phys. B, 2021, 30(3): 038106.
[13] Actively tunable dual-broadband graphene-based terahertz metamaterial absorber
Dan Hu(胡丹), Tian-Hua Meng(孟田华), Hong-Yan Wang(王红燕), and Mai-Xia Fu(付麦霞). Chin. Phys. B, 2021, 30(12): 126101.
[14] Retrieval of the effective constitutive parameters from metamaterial absorbers
Shaomei Shi(石邵美), Xiaojing Qiao(乔小晶), Shuo Liu(刘朔), and Weinan Liu(刘卫南). Chin. Phys. B, 2021, 30(11): 117803.
[15] Solar broadband metamaterial perfect absorber based on dielectric resonant structure of Ge cone array and InAs film
Kuang-Ling Guo(郭匡灵), Hou-Hong Chen(陈厚宏), Xiao-Ming Huang(黄晓明), Tian-Hui Hu(胡天惠), and Hai-Ying Liu(刘海英). Chin. Phys. B, 2021, 30(11): 114201.
No Suggested Reading articles found!