Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(4): 040306    DOI: 10.1088/1674-1056/22/4/040306
GENERAL Prev   Next  

Controlled remote implementation of quantum operations with high-dimensional systems

Zhan You-Bang (詹佑邦)a, Li Xiao-Wei (李晓薇)a, Ma Peng-Cheng (马鹏程)a, Shi Jin (施锦)b
a School of Physics and Electronic Electrical Engineering, Huaiyin Normal University, Huaian 223300, China;
b National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
Abstract  We present two protocols for controlled remote implementation of quantum operations between three-party high-dimensional systems. Firstly, the controlled teleportation of an arbitrary unitary operation by bidirectional quantum state teleportaion (BQST) with high-dimensional systems is considered. Then, instead of using the BQST method, a protocol for controlled remote implementation of partially unknown operations belonging to some restricted sets in high-dimensional systems is proposed. It is shown that, in these protocols, if and only if the controller would like to help the sender with the remote operations, the controlled remote implementation of quantum operations for high-dimensional systems can be completed.
Keywords:  controlled remote implementation      quantum operation      teleportation      high-dimensional entangled state  
Received:  30 July 2012      Revised:  26 September 2012      Accepted manuscript online: 
PACS:  03.67.Hk (Quantum communication)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.-a (Quantum information)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11074088).
Corresponding Authors:  Zhan You-Bang     E-mail:  ybzhan@hytc.edu.cn

Cite this article: 

Zhan You-Bang (詹佑邦), Li Xiao-Wei (李晓薇), Ma Peng-Cheng (马鹏程), Shi Jin (施锦) Controlled remote implementation of quantum operations with high-dimensional systems 2013 Chin. Phys. B 22 040306

[1] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[2] Cirac J I and Parkins A S 1994 Phys. Rev. A 50 R4441
[3] Moussa M H Y 1997 Phys. Rev. A 55 R3287
[4] Li W L, Li C F and Guo G C 2000 Phys. Rev. A 61 034301
[5] Lee J and Kim M S 2000 Phys. Rev. Lett. 84 4236
[6] Bowen G and Bose S 2001 Phys. Rev. Lett. 87 267901
[7] Rigolin G 2005 Phys. Rev. A 71 032303
[8] Yao Y and Chua W K 2006 Phys. Rev. Lett. 96 060502
[9] Gordon G and Rigolin G 2006 Phys. Rev. A 73 042309
[10] Muralidharan S and Panigrahi P K 2008 Phys. Rev. A 77 032321
[11] Sun Y, Man Z X and Xia Y J 2009 Chin. Phys. B 18 1742
[12] Mei F, Yu Y F and Zhang Z M 2010 Chin. Phys. B 19 020308
[13] Wang Z J, Zhang K and Fan C Y 2010 Chin. Phys. B 19 110311
[14] Zhan Y B, Zhang Q Y, Wang Y W and Ma P C 2010 Chin. Phys. Lett. 27 010307
[15] Wang M Y and Yan F L 2011 Chin. Phys. Lett. 28 060301
[16] Tang J W, Zhao G X and He X H 2011 Chin. Phys. B 20 050312
[17] Wang M Y and Yan F L 2011 Chin. Phys. B 20 120309
[18] Guo Y and Luo X B 2012 Chin. Phys. Lett. 29 060303
[19] Bouwmeester D, Pan J W, Kmattle, Eibl M, Weinfurter H and Zeilinger A 1997 Nature 390 575
[20] Furusawa A, Sorensen J L, Braustein S L, Fuchs C A, Kimble H J and Polzik E S 1998 Science 282 706
[21] Huelga S F, Vaccaro J A, Chefles A and Plenio M B 2001 Phys. Rev. A 63 042303
[22] Huelga S F, Plenio M B and Vaccaro J A 2002 Phys. Rev. A 65 042316
[23] Zou X B, Pahlke K and Mathis W 2002 Phys. Rev. A 65 064305
[24] Dür W, Vidal G and Cirac J I 2002 Phys. Rev. Lett. 89 057901
[25] Reznik B, Aharonov Y and Groisman B 2002 Phys. Rev. A 65 032312
[26] Zheng Y Z, Gu Y J and Guo G C 2002 Chin. Phys. Lett. 19 623
[27] Zheng Y Z, Ye P and Guo G C 2004 Chin. Phys. Lett. 21 9
[28] Zhang Y S, Ye M Y and Guo G C 2005 Phys. Rev. A 71 062331
[29] Wang A M 2006 Phys. Rev. A 74 032317
[30] Yao C M 2006 Chin. Phys. Lett. 23 545
[31] Wang A M 2007 Phys. Rev. A 75 062323
[32] Zhao N B and Wang A M 2007 Phys. Rev. A 76 062317
[33] Zhao N B and Wang A M 2008 Phys. Rev. A 78 014305
[34] Fan Q B and Liu D D 2008 Sci. China G: Phys. Mech. Astron. 51 1661
[35] Chen L B, Jin R B and Lu H 2009 Chin. Phys. B 18 30
[36] Zhang Z J and Cheung C Y 2011 J. Phys. B: At. Mol. Opt. Phys. 44 165508
[37] Huang Y F, Ren X F, Zhang Y S, Duan L M and Guo G C 2004 Phys. Rev. Lett. 93 240501
[38] Xiang G Y, Li J and Guo G C 2005 Phys. Rev. A 71 044304
[39] Mair A, Vaziri A, Weihs G and Zeilinger A 2001 Nature 412 313
[40] Son W, Lee J, Kim M S and Park Y J 2001 Phys. Rev. A 64 064304
[41] Bruβ D and Macchiavello C 2002 Phys. Rev. Lett. 88 127901
[42] Cabello A 2002 Phys. Rev. Lett. 89 100402
[43] Liu X S, Long G L, Tong D M and Li F 2002 Phys. Rev. A 65 022304
[44] Karimipour V, Bahraminasab A and Bagherinezhad S 2002 Phys. Rev. A 65 052331
[45] Zeng B and Zhang P 2002 Phys. Rev. A 65 022316
[46] Thew R T, Nemoto K, White A G and Munro W J 2002 Phys. Rev. A 66 012303
[47] Klimov A B, Guzmán R, Retamal J C and Saavedra C 2003 Phys. Rev. A 67 062313
[48] Cheong Y W, Lee S W, Lee J and Lee H W 2007 Phys. Rev. A 76 042314
[49] Alber G, Delgado A, Gisin N and Jex I 2001 J. Phys. A: Math. Gen. 34 8821
[1] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[2] Probabilistic quantum teleportation of shared quantum secret
Hengji Li(李恒吉), Jian Li(李剑), and Xiubo Chen(陈秀波). Chin. Phys. B, 2022, 31(9): 090303.
[3] Experimental realization of quantum controlled teleportation of arbitrary two-qubit state via a five-qubit entangled state
Xiao-Fang Liu(刘晓芳), Dong-Fen Li(李冬芬), Yun-Dan Zheng(郑云丹), Xiao-Long Yang(杨小龙), Jie Zhou(周杰), Yu-Qiao Tan(谭玉乔), and Ming-Zhe Liu(刘明哲). Chin. Phys. B, 2022, 31(5): 050301.
[4] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[5] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
[6] Controlled quantum teleportation of an unknown single-qutrit state in noisy channels with memory
Shexiang Jiang(蒋社想), Bao Zhao(赵宝), and Xingzhu Liang(梁兴柱). Chin. Phys. B, 2021, 30(6): 060303.
[7] Taking tomographic measurements for photonic qubits 88 ns before they are created
Zhibo Hou(侯志博), Qi Yin(殷琪), Chao Zhang(张超), Han-Sen Zhong(钟翰森), Guo-Yong Xiang(项国勇), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿), Geoff J. Pryde, and Anthony Laing. Chin. Phys. B, 2021, 30(4): 040304.
[8] Hierarchical simultaneous entanglement swapping for multi-hop quantum communication based on multi-particle entangled states
Guang Yang(杨光, Lei Xing(邢磊), Min Nie(聂敏), Yuan-Hua Liu(刘原华), and Mei-Ling Zhang(张美玲). Chin. Phys. B, 2021, 30(3): 030301.
[9] Quantum teleportation of particles in an environment
Lu Yang(杨璐), Yu-Chen Liu(刘雨辰), Yan-Song Li(李岩松). Chin. Phys. B, 2020, 29(6): 060301.
[10] Entanglement teleportation via a couple of quantum channels in Ising-Heisenberg spin chain model of a heterotrimetallic Fe-Mn-Cu coordination polymer
Yi-Dan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌). Chin. Phys. B, 2019, 28(12): 120307.
[11] Arbitrated quantum signature scheme with continuous-variable squeezed vacuum states
Yan-Yan Feng(冯艳艳), Rong-Hua Shi(施荣华), Ying Guo(郭迎). Chin. Phys. B, 2018, 27(2): 020302.
[12] Bidirectional multi-qubit quantum teleportation in noisy channel aided with weak measurement
Guang Yang(杨光), Bao-Wang Lian(廉保旺), Min Nie(聂敏), Jiao Jin(金娇). Chin. Phys. B, 2017, 26(4): 040305.
[13] Multi-hop teleportation based on W state and EPR pairs
Hai-Tao Zhan(占海涛), Xu-Tao Yu(余旭涛), Pei-Ying Xiong(熊佩颖), Zai-Chen Zhang(张在琛). Chin. Phys. B, 2016, 25(5): 050305.
[14] A novel scheme of hybrid entanglement swapping and teleportation using cavity QED in the small and large detuning regimes and quasi-Bell state measurement method
R Pakniat, M K Tavassoly, M H Zandi. Chin. Phys. B, 2016, 25(10): 100303.
[15] Detection of the ideal resource for multiqubit teleportation
Zhao Ming-Jing (赵明镜), Chen Bin (陈斌), Fei Shao-Ming (费少明). Chin. Phys. B, 2015, 24(7): 070302.
No Suggested Reading articles found!