|
|
Controlled remote implementation of quantum operations with high-dimensional systems |
Zhan You-Bang (詹佑邦)a, Li Xiao-Wei (李晓薇)a, Ma Peng-Cheng (马鹏程)a, Shi Jin (施锦)b |
a School of Physics and Electronic Electrical Engineering, Huaiyin Normal University, Huaian 223300, China; b National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China |
|
|
Abstract We present two protocols for controlled remote implementation of quantum operations between three-party high-dimensional systems. Firstly, the controlled teleportation of an arbitrary unitary operation by bidirectional quantum state teleportaion (BQST) with high-dimensional systems is considered. Then, instead of using the BQST method, a protocol for controlled remote implementation of partially unknown operations belonging to some restricted sets in high-dimensional systems is proposed. It is shown that, in these protocols, if and only if the controller would like to help the sender with the remote operations, the controlled remote implementation of quantum operations for high-dimensional systems can be completed.
|
Received: 30 July 2012
Revised: 26 September 2012
Accepted manuscript online:
|
PACS:
|
03.67.Hk
|
(Quantum communication)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.67.-a
|
(Quantum information)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11074088). |
Corresponding Authors:
Zhan You-Bang
E-mail: ybzhan@hytc.edu.cn
|
Cite this article:
Zhan You-Bang (詹佑邦), Li Xiao-Wei (李晓薇), Ma Peng-Cheng (马鹏程), Shi Jin (施锦) Controlled remote implementation of quantum operations with high-dimensional systems 2013 Chin. Phys. B 22 040306
|
[1] |
Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
|
[2] |
Cirac J I and Parkins A S 1994 Phys. Rev. A 50 R4441
|
[3] |
Moussa M H Y 1997 Phys. Rev. A 55 R3287
|
[4] |
Li W L, Li C F and Guo G C 2000 Phys. Rev. A 61 034301
|
[5] |
Lee J and Kim M S 2000 Phys. Rev. Lett. 84 4236
|
[6] |
Bowen G and Bose S 2001 Phys. Rev. Lett. 87 267901
|
[7] |
Rigolin G 2005 Phys. Rev. A 71 032303
|
[8] |
Yao Y and Chua W K 2006 Phys. Rev. Lett. 96 060502
|
[9] |
Gordon G and Rigolin G 2006 Phys. Rev. A 73 042309
|
[10] |
Muralidharan S and Panigrahi P K 2008 Phys. Rev. A 77 032321
|
[11] |
Sun Y, Man Z X and Xia Y J 2009 Chin. Phys. B 18 1742
|
[12] |
Mei F, Yu Y F and Zhang Z M 2010 Chin. Phys. B 19 020308
|
[13] |
Wang Z J, Zhang K and Fan C Y 2010 Chin. Phys. B 19 110311
|
[14] |
Zhan Y B, Zhang Q Y, Wang Y W and Ma P C 2010 Chin. Phys. Lett. 27 010307
|
[15] |
Wang M Y and Yan F L 2011 Chin. Phys. Lett. 28 060301
|
[16] |
Tang J W, Zhao G X and He X H 2011 Chin. Phys. B 20 050312
|
[17] |
Wang M Y and Yan F L 2011 Chin. Phys. B 20 120309
|
[18] |
Guo Y and Luo X B 2012 Chin. Phys. Lett. 29 060303
|
[19] |
Bouwmeester D, Pan J W, Kmattle, Eibl M, Weinfurter H and Zeilinger A 1997 Nature 390 575
|
[20] |
Furusawa A, Sorensen J L, Braustein S L, Fuchs C A, Kimble H J and Polzik E S 1998 Science 282 706
|
[21] |
Huelga S F, Vaccaro J A, Chefles A and Plenio M B 2001 Phys. Rev. A 63 042303
|
[22] |
Huelga S F, Plenio M B and Vaccaro J A 2002 Phys. Rev. A 65 042316
|
[23] |
Zou X B, Pahlke K and Mathis W 2002 Phys. Rev. A 65 064305
|
[24] |
Dür W, Vidal G and Cirac J I 2002 Phys. Rev. Lett. 89 057901
|
[25] |
Reznik B, Aharonov Y and Groisman B 2002 Phys. Rev. A 65 032312
|
[26] |
Zheng Y Z, Gu Y J and Guo G C 2002 Chin. Phys. Lett. 19 623
|
[27] |
Zheng Y Z, Ye P and Guo G C 2004 Chin. Phys. Lett. 21 9
|
[28] |
Zhang Y S, Ye M Y and Guo G C 2005 Phys. Rev. A 71 062331
|
[29] |
Wang A M 2006 Phys. Rev. A 74 032317
|
[30] |
Yao C M 2006 Chin. Phys. Lett. 23 545
|
[31] |
Wang A M 2007 Phys. Rev. A 75 062323
|
[32] |
Zhao N B and Wang A M 2007 Phys. Rev. A 76 062317
|
[33] |
Zhao N B and Wang A M 2008 Phys. Rev. A 78 014305
|
[34] |
Fan Q B and Liu D D 2008 Sci. China G: Phys. Mech. Astron. 51 1661
|
[35] |
Chen L B, Jin R B and Lu H 2009 Chin. Phys. B 18 30
|
[36] |
Zhang Z J and Cheung C Y 2011 J. Phys. B: At. Mol. Opt. Phys. 44 165508
|
[37] |
Huang Y F, Ren X F, Zhang Y S, Duan L M and Guo G C 2004 Phys. Rev. Lett. 93 240501
|
[38] |
Xiang G Y, Li J and Guo G C 2005 Phys. Rev. A 71 044304
|
[39] |
Mair A, Vaziri A, Weihs G and Zeilinger A 2001 Nature 412 313
|
[40] |
Son W, Lee J, Kim M S and Park Y J 2001 Phys. Rev. A 64 064304
|
[41] |
Bruβ D and Macchiavello C 2002 Phys. Rev. Lett. 88 127901
|
[42] |
Cabello A 2002 Phys. Rev. Lett. 89 100402
|
[43] |
Liu X S, Long G L, Tong D M and Li F 2002 Phys. Rev. A 65 022304
|
[44] |
Karimipour V, Bahraminasab A and Bagherinezhad S 2002 Phys. Rev. A 65 052331
|
[45] |
Zeng B and Zhang P 2002 Phys. Rev. A 65 022316
|
[46] |
Thew R T, Nemoto K, White A G and Munro W J 2002 Phys. Rev. A 66 012303
|
[47] |
Klimov A B, Guzmán R, Retamal J C and Saavedra C 2003 Phys. Rev. A 67 062313
|
[48] |
Cheong Y W, Lee S W, Lee J and Lee H W 2007 Phys. Rev. A 76 042314
|
[49] |
Alber G, Delgado A, Gisin N and Jex I 2001 J. Phys. A: Math. Gen. 34 8821
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|