Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(4): 040307    DOI: 10.1088/1674-1056/22/4/040307
GENERAL Prev   Next  

Efficient generation of two-dimensional cluster states in cavity QED

Zhang Gang (张刚)a, Zhou Jian (周建)b c, Xue Zheng-Yuan (薛正远)c
a Machinery and Electronics Engineering Institute, West Anhui University, Lu'an 237012, China;
b Anhui Xinhua University, Hefei 230088, China;
c Laboratory of Quantum Information Technology and School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
Abstract  We propose a scheme to achieve a kind of nontrivial multipartite pair-wise controlled phase operation in a cavity QED setup. The operation implemented is of geometrical nature and not sensitive to the thermal state of the cavity. In particular, we are manage to avoid the conventional dispersive coupling so that high speed gate operation is achieved which is very important in view of decoherence. We show that this multipartite pair-wise controlled phase operation makes the generation of two-dimensional cluster states very efficient.
Keywords:  controlled phase gate      cluster state      cavity QED  
Received:  25 July 2012      Revised:  18 October 2012      Accepted manuscript online: 
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: Project supported by the National Fundamental Research Program of China (Grant No. 2013CB921804), the National Natural Science Foundation of China (Grant No. 11004065), the Natural Science Foundation of Guangdong Province of China (Grant Nos. 10451063101006312 and S2011040000403), and the Funds of the Education Department of Anhui Province of China (Grant Nos. KJ2010A323, 2010SQRL187, and KJ2012B075).
Corresponding Authors:  Xue Zheng-Yuan     E-mail:  xuezhengyuan@yahoo.com.cn

Cite this article: 

Zhang Gang (张刚), Zhou Jian (周建), Xue Zheng-Yuan (薛正远) Efficient generation of two-dimensional cluster states in cavity QED 2013 Chin. Phys. B 22 040307

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2] Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. 86 5188
[3] Cho J and Lee H W 2005 Phys. Rev. Lett. 95 160501
[4] Zou X B and Mathis W 2005 Phys. Rev. A 72 013809
[5] Dong P, Xue Z Y, Yang M and Cao Z L 2006 Phys. Rev. A 73 033818
[6] Lin X M, Xue P, Chen M Y, Chen Z H and Li X H 2006 Phys. Rev. A 74 052339
[7] Zhang X L, Gao K L and Feng M 2007 Phys. Rev. A 75 034308
[8] Gont.a D, Radtke T and Fritzsche S 2009 Phys. Rev. A 79 062319
[9] Ye L 2007 Eur. Phys. J. D 41 413
[10] Ye L and Guo G C 2007 Phys. Lett. A 361 460
[11] Song J, Xia Y and Song H S 2010 Appl. Phys. Lett. 96 071102
[12] Shi Z C, Xia Y, Song J and Song H S 2012 Eur. Phys. J. D 66 11
[13] Dong P, Zhang L H and Cao Z L 2008 Chin. Phys. B 17 1979
[14] Zou C L, Gao G J, Lu Y, Li D C, Yang M and Cao Z L 2008 Chin. Phys. B 17 1174
[15] Zhang Z M and Li W B 2007 Chin. Phys. Lett. 24 344
[16] Wu H Z, Yang Z B and Zheng S B 2007 Chin. Phys. Lett. 24 3055
[17] Du G, Lai B H, Yu Y F and Zhang Z M 2009 Chin. Phys. Lett. 26 104201
[18] Xue Z Y, Zhang G, Dong P, Yi Y M and Cao Z L 2006 Eur. Phys. J. B 52 333
[19] Zhang X L, Gao K L and Feng M 2006 Phys. Rev. A 74 024303
[20] Zheng X H and Cao Z L 2006 J. Phys.: Condens. Matter 18 L599
[21] Zhang F Y, Pei P and Song H S 2010 Physica B 405 3334
[22] Song K H 2009 Chin. Phys. Lett. 26 120302
[23] Su S L, Wang Y, Guo Q, Wang H F and Zhang S 2012 Chin. Phys. B 21 044205
[24] Ai L Y, Shi Y L and Zhang Z M 2011 Chin. Phys. B 20 100303
[25] Chen Q, Feng M, Du J F and Hai W H 2011 Chin. Phys. B 20 010308
[26] Sleator T and Weinfurter H 1995 Phys. Rev. Lett. 74 4087
[27] Shor P W 1995 Phys. Rev. A 52 R2493
[28] Steane A M 1996 Phys. Rev. Lett. 77 793
[29] Grover L K 1998 Phys. Rev. Lett. 80 4329
[30] Šašura M and Buzek V 2001 Phys. Rev. A 64 012305
[31] Braunstein S L, Buzek V and Hillery M 2001 Phys. Rev. A 63 052313
[32] Yang C P, Liu Y X and Nori F 2010 Phys. Rev. A 81 062323
[33] Song K H, Zhao Y J, Shi Z G, Xiang S H and Chen X W 2012 Eur. Phys. J. D 66 1
[34] Solano E, de Matos Filho R L, and Zagury N 2001 Phys. Rev. Lett. 87 060402
[35] Zheng S B 2003 Phys. Rev. A 68 035801
[36] Mmer K and Sensen A 1999 Phys. Rev. Lett. 82 1835
[37] Sensen A and M?mer K 1999 Phys. Rev. Lett. 82 1971
[38] Sensen A and Mmer K 2000 Phys. Rev. A 62 022311
[39] Zhu S L, Wang Z D and Zanardi P 2005 Phys. Rev. Lett. 94 100502
[40] Xue Z Y and Wang Z D 2007 Phys. Rev. A 75 064303
[41] Xue Z Y 2012 Quantum Inf. Process. 11 1381
[42] Zhu S L and Wang Z D 2003 Phys. Rev. Lett. 91 187902
[43] Leibfried D, DeMarco B, Meyer V, Lucas D, Barrett M, Britton J, Itano W M, Jelenkovi B, Langer C, Rosenband T and Wineland D J 2003 Nature. 422 412
[44] Zeng B, Zhou D L and You L 2005 Phy. Rev. Lett. 95 110502
[45] Raimond J M, Bruneand M and Haroche S 2001 Rev. Mod. Phys. 73 565
[1] Deterministic remote state preparation of arbitrary three-qubit state through noisy cluster-GHZ channel
Zhihang Xu(许智航), Yuzhen Wei(魏玉震), Cong Jiang(江聪), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(4): 040304.
[2] Quantum computation and error correction based on continuous variable cluster states
Shuhong Hao(郝树宏), Xiaowei Deng(邓晓玮), Yang Liu(刘阳), Xiaolong Su(苏晓龙), Changde Xie(谢常德), and Kunchi Peng(彭堃墀). Chin. Phys. B, 2021, 30(6): 060312.
[3] A proposal for preparation of cluster states with linear optics
Le Ju(鞠乐), Ming Yang(杨名), and Peng Xue(薛鹏). Chin. Phys. B, 2021, 30(3): 030306.
[4] Phase-modulated quadrature squeezing in two coupled cavities containing a two-level system
Hao-Zhen Li(李浩珍), Ran Zeng(曾然), Xue-Fang Zhou(周雪芳), Mei-Hua Bi(毕美华), Jing-Ping Xu(许静平), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2020, 29(5): 050308.
[5] Cavity enhanced measurement of trap frequency in an optical dipole trap
Peng-Fei Yang(杨鹏飞), Hai He(贺海), Zhi-Hui Wang(王志辉), Xing Han(韩星), Gang Li(李刚), Peng-Fei Zhang(张鹏飞), Tian-Cai Zhang(张天才). Chin. Phys. B, 2019, 28(4): 043701.
[6] Hierarchical and probabilistic quantum information splitting of an arbitrary two-qubit state via two cluster states
Wen-Ming Guo(郭文明), Lei-Ru Qin(秦蕾茹). Chin. Phys. B, 2018, 27(11): 110302.
[7] A novel scheme of hybrid entanglement swapping and teleportation using cavity QED in the small and large detuning regimes and quasi-Bell state measurement method
R Pakniat, M K Tavassoly, M H Zandi. Chin. Phys. B, 2016, 25(10): 100303.
[8] Photon bunching and anti-bunching with two dipole-coupled atoms in an optical cavity
Ya-Mei Zheng(郑雅梅), Chang-Sheng Hu(胡长生), Zhen-Biao Yang(杨贞标), Huai-Zhi Wu(吴怀志). Chin. Phys. B, 2016, 25(10): 104202.
[9] Quantum state transfer between atomic ensembles trapped in separate cavities via adiabatic passage
Zhang Chun-Ling (张春玲), Chen Mei-Feng (陈美锋). Chin. Phys. B, 2015, 24(7): 070310.
[10] Generation of hyperentangled four-photon cluster state via cross-Kerr nonlinearity
Yan Xiang (闫香), Yu Ya-Fei (於亚飞), Zhang Zhi-Ming (张智明). Chin. Phys. B, 2014, 23(6): 060306.
[11] Scheme for generating a cluster-type entangled squeezed vacuum state via cavity QED
Wen Jing-Ji (文晶姬), Yeon Kyu-Hwang, Wang Hong-Fu (王洪福), Zhang Shou (张寿). Chin. Phys. B, 2014, 23(4): 040301.
[12] Electronic cluster state entanglement concentration based on charge detection
Liu Jiong (刘炯), Zhao Sheng-Yang (赵圣阳), Zhou Lan (周澜), Sheng Yu-Bo (盛宇波). Chin. Phys. B, 2014, 23(2): 020313.
[13] Large payload quantum steganography based on cavity quantum electrodynamics
Ye Tian-Yu (叶天语), Jiang Li-Zhen (蒋丽珍). Chin. Phys. B, 2013, 22(4): 040305.
[14] Efficient three-step entanglement concentration for an arbitrary four-photon cluster state
Si Bin (司斌), Su Shi-Lei (苏石磊), Sun Li-Li (孙立莉), Cheng Liu-Yong (程留永), Wang Hong-Fu (王洪福), Zhang Shou (张寿). Chin. Phys. B, 2013, 22(3): 030305.
[15] Generating a four-photon polarization-entangled cluster state with homodyne measurement via cross-Kerr nonlinearity
Su Shi-Lei(苏石磊), Wang Yuan(王媛), Guo Qi(郭奇), Wang Hong-Fu(王洪福), and Zhang Shou(张寿) . Chin. Phys. B, 2012, 21(4): 044205.
No Suggested Reading articles found!