Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(3): 030510    DOI: 10.1088/1674-1056/22/3/030510
GENERAL Prev   Next  

Average consensus of multi-agent systems with communication time delays and noisy links

Sun Yong-Zheng (孙永征)a b, Li Wang (李望)a, Ruan Jiong (阮炯)b
a School of Sciences, China University of Mining and Technology, Xuzhou 221008, China;
b School of Mathematical Sciences, Fudan University, Shanghai 200433, China
Abstract  In this paper, we consider the average-consensus problem with communication time delays and noisy links. We analyze two different cases of coupling topologies: fixed and switching topologies. By utilizing the stability theory of the stochastic differential equations, we analytically show that the average consensus could be achieved almost surely with the perturbation of noise and the communication time delays even if the time delay is time-varying. The theoretical results show that the multi-agent systems can tolerate relatively large time delays if the noise is weak, and it can tolerate relatively strong noise if the time delays are low. The simulation results show that systems with strong noise intensities yield slow convergence.
Keywords:  average consensus      multi-agent systems      time delay      white noise  
Received:  27 June 2012      Revised:  13 September 2012      Accepted manuscript online: 
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  05.40.Ca (Noise)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61203304, 61203055, and 11226150) and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 2011QNA26, 2010LKSX04, and 2010LKSX09).
Corresponding Authors:  Sun Yong-Zheng     E-mail:  yzsung@gmail.com

Cite this article: 

Sun Yong-Zheng (孙永征), Li Wang (李望), Ruan Jiong (阮炯) Average consensus of multi-agent systems with communication time delays and noisy links 2013 Chin. Phys. B 22 030510

[1] Vicsek T, Czirok A, Jacob E B, Cohen I and Schochet O 1995 Phys. Rev. Lett. 75 1226
[2] Jadbabaie A, Lin J and Morse A S 2003 IEEE Trans. Automat. Control 48 988
[3] Fax J A and Murray R M 2004 IEEE Trans. Automat. Control 49 1465
[4] Olfati-Saber R and Murray R M 2004 IEEE Trans. Automat. Control 49 1520
[5] Ren W and Beard R W 2005 IEEE Trans. Automat. Control 50 655
[6] Moreau L 2005 IEEE Trans. Automat. Control 50 169
[7] Bauso D, Giarré L and Pesenti R 2006 Sys. Control Lett. 55 918
[8] Salehi A T and Jadbabaie A 2008 IEEE Trans. Automat. Control 53 791
[9] Sun F L, Guan Z H, Zhan X S and Yuan F S 2012 Nonlinear Analysis: Real World Applications 13 1979
[10] Wang L and Xiao F 2010 IEEE Trans. Auto. Control 55 950
[11] Song H Y, Yu L, Hu H X and Zhang W A 2012 Chin. Phys. B 21 028901
[12] Yu W W, Chen G R and Cao M 2010 Automatica 46 1089
[13] Zhang W G, Zeng D L and Guo Z K 2010 Chin. Phys. B 19 070518
[14] Guan Z H, Liu Z W, Feng G and Jian M 2012 Automatica 48 1397
[15] Hong Y G, Chen G and Bushnell L 2008 Automatica 44 846
[16] Zhang Y and Tian Y P 2010 Int. J. Control 83 2368
[17] Sun W and Dou L H 2010 Chin. Phys. B 19 120513
[18] Li J Z 2011 Chin. Phys. B 20 020512
[19] Yan J, Guan X P and Luo X Y 2011 Chin. Phys. B 20 048901
[20] Guan Z H, Meng C, Liao R Q and Zhang D X 2012 Phys. Lett. A 376 387
[21] Zhao Y, Duan Z S, Wen G H and Chen G R 2012 Int. J. Control 85 332
[22] Hu J P and Hong Y G 2007 Physica A 374 853
[23] Sun Y G, Wang L and Xie G 2008 Sys. Control Lett. 57 175
[24] Xiao F and Wang L 2008 IEEE Trans. Automat. Control 53 1804
[25] Lin P and Jia Y 2008 Physica A 387 303
[26] Yang T, Jin Y H, Wang W and Shi Y J 2011 Chin. Phys. B 20 020511
[27] Lu J, Ho D W C and Kurths J 2009 Phys. Rev. E 80 066121
[28] Wu Z H and Fang H J 2012 International Journal of System Science 43 140
[29] Huang M and Manton J H 2009 SIAM Journal of Control and Optimization 48 134
[30] Huang M and Manton J H 2010 IEEE Trans. Automat. Control 55 235
[31] Li T and Zhang J 2009 Automatica 45 1929
[32] Sun Y G 2012 Abstract and Applied Analysis 2012 621060
[33] Sun Y and Ruan J 2008 Chin. Phys. B 17 4137
[34] Sun Y, Zhao D and Ruan J 2010 Physica A 389 4149
[35] Horn R A and Johnson C R 1985 Matrix Analysis (New York: Cambridge University)
[36] Mao X 1997 Stochastic Differential Equations and Applications (London: Horwood)
[1] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[2] Effect of autaptic delay signal on spike-timing precision of single neuron
Xuan Ma(马璇), Yaya Zhao(赵鸭鸭), Yafeng Wang(王亚峰), Yueling Chen(陈月玲), and Hengtong Wang(王恒通). Chin. Phys. B, 2023, 32(3): 038703.
[3] Inferring interactions of time-delayed dynamic networks by random state variable resetting
Changbao Deng(邓长宝), Weinuo Jiang(蒋未诺), and Shihong Wang(王世红). Chin. Phys. B, 2022, 31(3): 030502.
[4] Review on typical applications and computational optimizations based on semiclassical methods in strong-field physics
Xun-Qin Huo(火勋琴), Wei-Feng Yang(杨玮枫), Wen-Hui Dong(董文卉), Fa-Cheng Jin(金发成), Xi-Wang Liu(刘希望), Hong-Dan Zhang(张宏丹), and Xiao-Hong Song(宋晓红). Chin. Phys. B, 2022, 31(3): 033101.
[5] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[6] Memory-augmented adaptive flocking control for multi-agent systems subject to uncertain external disturbances
Ximing Wang(王希铭), Jinsheng Sun(孙金生), Zhitao Li(李志韬), and Zixing Wu(吴梓杏). Chin. Phys. B, 2022, 31(2): 020203.
[7] Fault-tolerant finite-time dynamical consensus of double-integrator multi-agent systems with partial agents subject to synchronous self-sensing function failure
Zhi-Hai Wu(吴治海) and Lin-Bo Xie(谢林柏). Chin. Phys. B, 2022, 31(12): 128902.
[8] Sparse identification method of extracting hybrid energy harvesting system from observed data
Ya-Hui Sun(孙亚辉), Yuan-Hui Zeng(曾远辉), and Yong-Ge Yang(杨勇歌). Chin. Phys. B, 2022, 31(12): 120203.
[9] Finite-time Mittag—Leffler synchronization of fractional-order complex-valued memristive neural networks with time delay
Guan Wang(王冠), Zhixia Ding(丁芝侠), Sai Li(李赛), Le Yang(杨乐), and Rui Jiao(焦睿). Chin. Phys. B, 2022, 31(10): 100201.
[10] Consensus problems on networks with free protocol
Xiaodong Liu(柳晓东) and Lipo Mo(莫立坡). Chin. Phys. B, 2021, 30(7): 070701.
[11] Delayed excitatory self-feedback-induced negative responses of complex neuronal bursting patterns
Ben Cao(曹奔), Huaguang Gu(古华光), and Yuye Li(李玉叶). Chin. Phys. B, 2021, 30(5): 050502.
[12] Stabilization strategy of a car-following model with multiple time delays of the drivers
Weilin Ren(任卫林), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2021, 30(12): 120506.
[13] Modeling and dynamics of double Hindmarsh-Rose neuron with memristor-based magnetic coupling and time delay
Guoyuan Qi(齐国元) and Zimou Wang(王子谋). Chin. Phys. B, 2021, 30(12): 120516.
[14] Multiple Lagrange stability and Lyapunov asymptotical stability of delayed fractional-order Cohen-Grossberg neural networks
Yu-Jiao Huang(黄玉娇), Xiao-Yan Yuan(袁孝焰), Xu-Hua Yang(杨旭华), Hai-Xia Long(龙海霞), Jie Xiao(肖杰). Chin. Phys. B, 2020, 29(2): 020703.
[15] Enhanced vibrational resonance in a single neuron with chemical autapse for signal detection
Zhiwei He(何志威), Chenggui Yao(姚成贵), Jianwei Shuai(帅建伟), and Tadashi Nakano. Chin. Phys. B, 2020, 29(12): 128702.
No Suggested Reading articles found!