|
|
Comparison between non-Markovian dynamics with and without rotating wave approximation |
Tang Ning (唐宁), Xu Tian-Tian (徐甜甜), Zeng Hao-Sheng (曾浩生) |
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Department of Physics,Hunan Normal University, Changsha 410081, China |
|
|
Abstract In the limit of weak coupling between the system and its reservoir, we derive the time-convolutionless (TCL) non-Markovian master equation for a two-level system interacting with a zero-temperature structured environment with no rotating wave approximation (NRWA). By comparing with the dynamics with RWA, we demonstrate the impact of the RWA on the system dynamics, as well as the effects of non-Markovianity on the preservation of atomic coherence, squeezing, and entanglement.
|
Received: 11 July 2012
Revised: 20 August 2012
Accepted manuscript online:
|
PACS:
|
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
42.50.Lc
|
(Quantum fluctuations, quantum noise, and quantum jumps)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11275064 and 11075050), the National Basic Research Program of China (Grant No. 2007CB925204), and the Construct Program of the National Key Discipline, China. |
Corresponding Authors:
Zeng Hao-Sheng
E-mail: hszeng@hunnu.edu.cn
|
Cite this article:
Tang Ning (唐宁), Xu Tian-Tian (徐甜甜), Zeng Hao-Sheng (曾浩生) Comparison between non-Markovian dynamics with and without rotating wave approximation 2013 Chin. Phys. B 22 030304
|
[1] |
Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
|
[2] |
Lindblad G 1976 Commun. Math. Phys. 48 119
|
[3] |
Breuer H P and Petruccione F 2007 The Theory of Open Quantum Systems (Oxford: Oxford University Press)
|
[4] |
Kubota Y and Nobusada K 2009 J. Phys. Soc. Jpn. 78 114603
|
[5] |
Ji Y H and Hu J J 2010 Chin. Phys. B 19 060304
|
[6] |
Shao J 2004 J. Chem. Phys. 120 5053
|
[7] |
Chin A W, Datta A, Caruso F, Huelga S F and Plenio M B 2010 New J. Phys. 12 065002
|
[8] |
Dijkstra A G and Tanimura Y 2010 Phys. Rev. Lett. 104 250401
|
[9] |
Huang L Y and Fang M F 2010 Chin. Phys. B 19 090318
|
[10] |
Breuer H P, Laine E M and Piilo J 2009 Phys. Rev. Lett. 103 210401
|
[11] |
Rivas á, Huelga S F and Plenio M B 2010 Phys. Rev. Lett. 105 050403
|
[12] |
Usha Devi A R, Rajagopal A K and Sudha 2011 Phys. Rev. A 83 022109
|
[13] |
Lu X M, Wang X G and Sun C P 2010 Phys. Rev. A 82 042103
|
[14] |
Hou S C, Yi X X, Yu S X and Oh C H 2011 Phys. Rev. A 83 062115
|
[15] |
Xu Z Y, Yang W L and Feng M 2010 Phys. Rev. A 81 044105
|
[16] |
He Z, Zou J, Li L and Shao B 2011 Phys. Rev. A 83 012108
|
[17] |
Zheng Y P, Tang N, Wang G Y and Zeng H S 2011 Chin. Phys. B 20 110301
|
[18] |
Shabani A and Lidar D A 2009 Phys. Rev. Lett. 102 100402
|
[19] |
Breuer H P and Vacchini B 2009 Phys. Rev. E. 79 041147
|
[20] |
Haikka P and Maniscalco S 2010 Phys. Rev. A 81 052103
|
[21] |
Chang K W and Law C K 2010 Phys. Rev. A 81 052105
|
[22] |
Chruściński D, Kossakowski A and Pascazio S 2010 Phys. Rev. A 81 032101
|
[23] |
Haikka P, Cresser J D and Maniscalco S 2011 Phys. Rev. A 83 012112
|
[24] |
Ding B F, Wang X Y, Tang Y F, Mi X W and Zhao H P 2011 Chin. Phys. B 20 060304
|
[25] |
Li C F, Wang H T, Yuan H Y, Ge R C and Guo G C 2011 Chin. Phys. Lett. 28 120302
|
[26] |
Fang M F and Li Y L 2011 Chin. Phys. B 20 100312
|
[27] |
Jing J and Yu T 2010 Phys. Rev. Lett. 105 240403
|
[28] |
Wu C, Li Y, Zhu M and Guo Hong 2011 Phys. Rev. A 83 052116
|
[29] |
Xu J S, Li C F, Gong M, Zou X B, Shi C H, Chen G and Guo G C 2010 Phys. Rev. Lett. 104 100502
|
[30] |
Xu J S, Li C F, Zhang C J, Xu X Y, Zhang Y S and Guo G C 2010 Phys. Rev. A 82 042328
|
[31] |
Laine E M, Piilo J and Breuer H P 2010 Phys. Rev. A 81 062115
|
[32] |
Zeng H S, Tang N, Zheng Y P and Wang G Y 2011 Phys. Rev. A 84 032118
|
[33] |
Fang M F, Zhou P and Swain S 2000 J. Mod. Opt. 47 1043
|
[34] |
Bellomo B, Lo Franco R and Compagno G 2007 Phys. Rev. Lett. 99 160502
|
[35] |
Wootters W K 1998 Phys. Rev. Lett. 80 2245
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|