Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(2): 024212    DOI: 10.1088/1674-1056/22/2/024212
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

High efficiency grating couplers based on shared process with CMOS MOSFETs

Qiu Chao (仇超)a b c, Sheng Zhen (盛振)a, Li Le (李乐)b, Albert Pang (彭树根)b, Wu Ai-Min (武爱民)a, Wang Xi (王曦)a, Zou Shi-Chang (邹世昌)a b, Gan Fu-Wan (甘甫烷)a
a State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
b Grace Semiconductor Manufacturing Corporation, Shanghai 201203, China;
c University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Grating couplers are widely investigated as coupling interfaces between silicon-on-insulator waveguides and optical fibers. In this work, a high-efficiency and complementary metal-oxide-semiconductor (CMOS) process compatible grating coupler is proposed. The poly-Si layer used as gate in CMOS metal-oxide-semiconductor field effect transistor (MOSFET) is combined with a normal fully etched grating coupler, which greatly enhances its coupling efficiency. With optimal structure parameters, a coupling efficiency can reach as high as ~ 70% at a wavelength of 1550 nm as indicated by simulation. From the angle of fabrication, all masks and etching steps are shared between MOSFETs and grating couplers, thereby making the high performance grating couplers easily integrated with CMOS circuits. Fabrication errors such as alignment shift are also simulated, showing that the device is quite tolerant in fabrication.
Keywords:  grating coupler      optical waveguide      silicon-on-insulator      poly-silicon  
Received:  09 May 2012      Revised:  06 July 2012      Accepted manuscript online: 
PACS:  42.82.-m (Integrated optics)  
  42.82.Et (Waveguides, couplers, and arrays)  
Fund: Project supported by the Natural Science Foundation of Shanghai, China (Grant No. 11ZR1443700); the Funds from the Science and Technology Commission of Shanghai Municipality, China (Grant Nos. 10DJ1400400 and 10706200500); and the National Natural Science Foundation of China (Grant No. 61106051).
Corresponding Authors:  Sheng Zhen, Gan Fu-Wan     E-mail:  zsheng@mail.sim.ac.cn; fuwan@mail.sim.ac.cn

Cite this article: 

Qiu Chao (仇超), Sheng Zhen (盛振), Li Le (李乐), Albert Pang (彭树根), Wu Ai-Min (武爱民), Wang Xi (王曦), Zou Shi-Chang (邹世昌), Gan Fu-Wan (甘甫烷) High efficiency grating couplers based on shared process with CMOS MOSFETs 2013 Chin. Phys. B 22 024212

[1] Yurii A V and Sharee J M 2004 Opt. Express 12 1622
[2] Zhao Y N, Li K Z, Wang X H and Jin C J 2011 Chin. Phys. B 20 074210
[3] Taillaert D, Bienstman P and Baets R 2004 Opt. Lett. 29 2749
[4] Liu L, Pu M H, Yvind K and Hvam J M 2010 Appl. Phys. Lett. 96 051126
[5] Zhou L, Li Z Y, Zhu Y, Li Y T, Fan Z C, Han W H, Yu Y D and Yu J Z 2010 Chin. Phys. B 19 124214
[6] Bolten J, Hofrichter J, Moll N, Schonenberger S, Horst F, Offrein B, Wahlbrink T, Mollenhauer T and Kurz H 2009 Microelectronic Eng. 86 1114
[7] Schmid B, Petrov A and Eich M 2009 Opt. Express 17 11066
[8] Vermeulen D, Selvaraja S, Verheyen P, Lepage G, Bogaerts W, Absil P, van Thourhout D and Roelken G 2010 Opt. Express 18 18278
[9] Bienstman P, CAMFR [online] available at http://camfr.sourceforge.net
[10] Tilke A T, Stapelmann C, Eller M, Bach K H, Hampp R, Lindsay R, Conti R, Wille W, Jaiswai R, Galiano M and Jain A 2007 IEEE T. Semiconduct. M. 20 59
[1] Second harmonic generation from precise diamond blade diced ridge waveguides
Hui Xu(徐慧), Ziqi Li(李子琦), Chi Pang(逄驰), Rang Li(李让), Genglin Li(李庚霖), Sh. Akhmadaliev, Shengqiang Zhou(周生强), Qingming Lu(路庆明), Yuechen Jia(贾曰辰), and Feng Chen(陈峰). Chin. Phys. B, 2022, 31(9): 094209.
[2] Impact of STI indium implantation on reliability of gate oxide
Xiao-Liang Chen(陈晓亮), Tian Chen(陈天), Wei-Feng Sun(孙伟锋), Zhong-Jian Qian(钱忠健), Yu-Dai Li(李玉岱), and Xing-Cheng Jin(金兴成). Chin. Phys. B, 2022, 31(2): 028505.
[3] Optical properties of He+-implanted and diamond blade-diced terbium gallium garnet crystal planar and ridge waveguides
Jia-Li You(游佳丽), Yu-Song Wang(王雨松), Tong Wang(王彤), Li-Li Fu(付丽丽), Qing-Yang Yue(岳庆炀), Xiang-Fu Wang(王祥夫), Rui-Lin Zheng(郑锐林), and Chun-Xiao Liu(刘春晓). Chin. Phys. B, 2022, 31(11): 114203.
[4] Bidirectional highly-efficient quantum routing in a T-bulge-shaped waveguide
Jia-Hao Zhang(张家豪), Da-Yong He(何大永), Gang-Yin Luo(罗刚银), Bi-Dou Wang(王弼陡), and Jin-Song Huang(黄劲松). Chin. Phys. B, 2021, 30(3): 034204.
[5] Design and fabrication of GeAsSeS chalcogenide waveguides with thermal annealing
Limeng Zhang(张李萌), Jinbo Chen(陈锦波), Jierong Gu(顾杰荣), Yixiao Gao(高一骁), Xiang Shen(沈祥), Yimin Chen(陈益敏), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2021, 30(3): 034210.
[6] Polarization-independent silicon photonic grating coupler for large spatial light spots
Lijun Yang(杨丽君), Xiaoyan Hu(胡小燕), Bin Li(李斌), and Jing Cao(曹静). Chin. Phys. B, 2021, 30(2): 024206.
[7] Effect of dark soliton on the spectral evolution of bright soliton in a silicon-on-insulator waveguide
Zhen Liu(刘振), Wei-Guo Jia(贾维国), Hong-Yu Wang(王红玉), Yang Wang(汪洋), Neimule Men-Ke(门克内木乐), Jun-Ping Zhang(张俊萍). Chin. Phys. B, 2020, 29(6): 064212.
[8] Effects of buried oxide layer on working speed of SiGe heterojunction photo-transistor
Xian-Cheng Liu(刘先程), Jia-Jun Ma(马佳俊), Hong-Yun Xie(谢红云), Pei Ma(马佩), Liang Chen(陈亮), Min Guo(郭敏), Wan-Rong Zhang(张万荣). Chin. Phys. B, 2020, 29(2): 028501.
[9] Propagation characteristics of parallel dark solitons in silicon-on-insulator waveguide
Zhen Liu(刘振), Weiguo Jia(贾维国), Yang Wang(汪洋), Hongyu Wang(王红玉), Neimule Men-Ke(门克内木乐), Jun-Ping Zhang(张俊萍). Chin. Phys. B, 2020, 29(1): 014203.
[10] Extraordinary transmission and reflection in PT-symmetric two-segment-connected triangular optical waveguide networks with perfect and broken integer waveguide length ratios
Jia-Ye Wu(吴嘉野), Xu-Hang Wu(吴栩航), Xiang-Bo Yang(杨湘波), Hai-Ying Li(李海盈). Chin. Phys. B, 2019, 28(10): 104208.
[11] Research on the radiation hardened SOI devices with single-step Si ion implantation
Li-Hua Dai(戴丽华), Da-Wei Bi(毕大炜), Zhi-Yuan Hu(胡志远), Xiao-Nian Liu(刘小年), Meng-Ying Zhang(张梦映), Zheng-Xuan Zhang(张正选), Shi-Chang Zou(邹世昌). Chin. Phys. B, 2018, 27(4): 048503.
[12] Enhanced radiation-induced narrow channel effects in 0.13-μm PDSOI nMOSFETs with shallow trench isolation
Meng-Ying Zhang(张梦映), Zhi-Yuan Hu(胡志远), Da-Wei Bi(毕大炜), Li-Hua Dai(戴丽华), Zheng-Xuan Zhang(张正选). Chin. Phys. B, 2018, 27(2): 028501.
[13] Influence of characteristics' measurement sequence on total ionizing dose effect in PDSOI nMOSFET
Xin Xie(解鑫), Da-Wei Bi(毕大伟), Zhi-Yuan Hu(胡志远), Hui-Long Zhu(朱慧龙), Meng-Ying Zhang(张梦映), Zheng-Xuan Zhang(张正选), Shi-Chang Zou(邹世昌). Chin. Phys. B, 2018, 27(12): 128501.
[14] Direct measurement and analysis of total ionizing dose effect on 130 nm PD SOI SRAM cell static noise margin
Qiwen Zheng(郑齐文), Jiangwei Cui(崔江维), Mengxin Liu(刘梦新), Dandan Su(苏丹丹), Hang Zhou(周航), Teng Ma(马腾), Xuefeng Yu(余学峰), Wu Lu(陆妩), Qi Guo(郭旗), Fazhan Zhao(赵发展). Chin. Phys. B, 2017, 26(9): 096103.
[15] Total ionizing dose induced single transistor latchup in 130-nm PDSOI input/output NMOSFETs
Shuang Fan(樊双), Zhi-Yuan Hu(胡志远), Zheng-Xuan Zhang(张正选), Bing-Xu Ning(宁冰旭), Da-Wei Bi(毕大炜), Li-Hua Dai(戴丽华), Meng-Ying Zhang(张梦映), Le-Qing Zhang(张乐情). Chin. Phys. B, 2017, 26(3): 036103.
No Suggested Reading articles found!