Abstract We design and demonstrate a one-dimensional grating coupler with a low polarization-dependent loss (PDL) for large spatial light spots. Based on current fabrication conditions, we first utilize genetic algorithms to find the optimal grating structure including the distributions of duty and periods, making the effective refractive index of transverse electric mode the same as that of transverse magnetic mode. The designed grating coupler is fabricated on the common silicon-on-insulator platform and the PDL is measured to be within 0.41 dB covering the C-band.
Lijun Yang(杨丽君), Xiaoyan Hu(胡小燕), Bin Li(李斌), and Jing Cao(曹静) Polarization-independent silicon photonic grating coupler for large spatial light spots 2021 Chin. Phys. B 30 024206
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.