Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 024206    DOI: 10.1088/1674-1056/abbc00
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Polarization-independent silicon photonic grating coupler for large spatial light spots

Lijun Yang(杨丽君)†, Xiaoyan Hu(胡小燕), Bin Li(李斌), and Jing Cao(曹静)
Information Science Academy of China Electronics Technology Group Corporation, Beijing 100086, China
Abstract  We design and demonstrate a one-dimensional grating coupler with a low polarization-dependent loss (PDL) for large spatial light spots. Based on current fabrication conditions, we first utilize genetic algorithms to find the optimal grating structure including the distributions of duty and periods, making the effective refractive index of transverse electric mode the same as that of transverse magnetic mode. The designed grating coupler is fabricated on the common silicon-on-insulator platform and the PDL is measured to be within 0.41 dB covering the C-band.
Keywords:  silicon photonics      grating coupler      polarization-dependent loss  
Received:  13 July 2020      Revised:  24 August 2020      Accepted manuscript online:  28 September 2020
PACS:  42.82.-m (Integrated optics)  
  42.82.Et (Waveguides, couplers, and arrays)  
  42.79.Dj (Gratings)  
  42.25.Ja (Polarization)  
Fund: Project supported by the National High Technology Research and Development Program of China (Grant No. 18-H863-04-ZD-006-007-01).
Corresponding Authors:  Corresponding author. E-mail: ylj14@tsinghua.org.cn   

Cite this article: 

Lijun Yang(杨丽君), Xiaoyan Hu(胡小燕), Bin Li(李斌), and Jing Cao(曹静) Polarization-independent silicon photonic grating coupler for large spatial light spots 2021 Chin. Phys. B 30 024206

1 Soref R 2006 IEEE J. Sel. Top. Quantum Electron. 12 1678
2 Kopp C, Bernabé S, Bakir B B, Fedeli J, Orobtchouk R, Schrank F, Porte H, Zimmermann L and Tekin T 2011 IEEE J. Sel. Top. Quantum Electron. 17 498
3 Chen X, Li C and Tsang H K 2011 NPG Asia Mater. 3 34
4 Marchetti R, Lacava C, Carroll L, Gradkowski K and Minzioni P 2019 Photon. Res. 7 201
5 Yang T, Lin H and Jia B 2018 Front Optoelectron. 11 2
6 Tiecke T G, Nayak K P, Thompson J D, Peyronel T, de Leon N P, Vuleti?V and Lukin M D 2015 Optica 2 70
7 Xu L, Chen X, Li C and Tsang H K 2011 Opt. Commun. 284 2242
8 Benedikovic D, Alonso-Ramos C, Cheben P, Schmid J H, Wang S, Xu, D X, Lapointe J, Janz S, Halir R, Ortega-Mo\ nux A, Wang\"uemert-Pérez J G, Molina-Fern\'andez I, Fédéli J M, Vivien L and Dado M 2015 Opt. Lett. 40 4190
9 Dai M, Ma L, Xu Y, Lu M, Liu X and Chen Y 2015 Opt. Express 23 1691
10 Zaoui W S, Kunze A, Vogel W and Berroth M 2013 IEEE Photon. Technol. Lett. 25 1395
11 Tang Y B, Dai D X and He S L 2009 IEEE Photon. Technol. Lett. 21 242
12 Zaoui W S, Kunze A, Vogel W and Berroth M 2013 IEEE Photon. Technol. Lett. 25 1395
13 Shao S Q and Wang Y 2010 Opt. Lett. 35 1834
14 Chen X and Tsang H K2011 Opt. Express 36 796
15 Cheng Z Z and Tsang H K 2014 Opt. Lett. 39 2206
16 Song J H, Doany F E, Medhin A K, Dupuis N, Lee B G and Libsch F R 2015 Opt. Lett. 40 3941
17 Li H Y, Liu Y, Zhang M L, Zhou W Q, Zhang C L, Miao E B, Tang C Y and Chun X 2014 Opt. Engin. 53 0571051
18 Li H Y, Liu Y, Miao C J, Zhang M L, Zhou W Q, Tang C Y and Li E B 2014 Opt. Engin. 53 0971061
19 Aflatouni F, Abiri B, Rekhi A and Hajimiri A 2015 Opt. Express 23 5117
20 Poulton C V, Byrd M J, Russo P, Timurdogan E, Khandaker M, Vermeulen D and Watts M R 2019 IEEE J. Sel. Top. Quantum Electron. 25 1
21 Poulton C V, Yaacobi A, Cole D B, Byrd M J, Raval M, Vermeulen D and Watts M R 2017 Opt. Lett. 42 4091
22 Bhargava P, Kim T, Poulton C V, Notaros J, Yaacobi A, Timurdogan E, Baiocco C, Fahrenkopf N, Kruger S, Ngai T, Timalsina Y, Watts M R and Stojanovi\'c V 2019 Symposium on VLSI Circuits, June 10-14, 2019, Kyoto, Japan, pp. C262-C263
23 Yu Z J, Cui H R and Sun X K 2017 Photon. Res. 5 B15
24 Laere F V, Bogaerts W, Dumon P, Roelkens G, Thourhout D V and Baets R 2009 J. Lightwave Technol. 27 612
25 Streshinsky M, Shi R, Novack A, Cher R T, Lim A E, Lo P G, Baehr-Jones T and Hochberg M 2013 Opt. Express 21 31019
26 Zaoui W S, Rosa M F, Vogel W, Berroth M, Butschke J and Letzkus F 2012 Opt. Express 20 B238
27 Zaoui W S, Kunze A, Vogel W, Berroth M, Butschke J, Letzkus F and Burghartz J 2014 Opt. Express 22 1277
[1] High efficiency, small size, and large bandwidth vertical interlayer waveguide coupler
Shao-Yang Li(李绍洋), Liang-Liang Wang(王亮亮), Dan Wu(吴丹), Jin You(游金), Yue Wang(王玥), Jia-Shun Zhang(张家顺), Xiao-Jie Yin(尹小杰), Jun-Ming An(安俊明), and Yuan-Da Wu(吴远大). Chin. Phys. B, 2022, 31(2): 024203.
[2] A 32-channel 100 GHz wavelength division multiplexer by interleaving two silicon arrayed waveguide gratings
Changjian Xie(解长健), Xihua Zou (邹喜华), Fang Zou(邹放), Lianshan Yan(闫连山), Wei Pan(潘炜), and Yong Zhang(张永). Chin. Phys. B, 2021, 30(12): 120703.
[3] 16-channel dual-tuning wavelength division multiplexer/demultiplexer
Pei Yuan(袁配), Yue Wang(王玥), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), Xiong-Wei Hu(胡雄伟). Chin. Phys. B, 2018, 27(12): 124208.
[4] 1.3-μm InAs/GaAs quantum dots grown on Si substrates
Fu-Hui Shao(邵福会), Yi Zhang(张一), Xiang-Bin Su(苏向斌), Sheng-Wen Xie(谢圣文), Jin-Ming Shang(尚金铭), Yun-Hao Zhao(赵云昊), Chen-Yuan Cai(蔡晨元), Ren-Chao Che(车仁超), Ying-Qiang Xu(徐应强), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2018, 27(12): 128105.
[5] Apodized grating coupler using fully-etched nanostructures
Hua Wu(武华), Chong Li(李冲), Zhi-Yong Li(李智勇), Xia Guo(郭霞). Chin. Phys. B, 2016, 25(8): 084212.
[6] Mechanical strains in pecvd SiNx:H films for nanophotonic application
O. Semenova, A. Kozelskaya, Li Zhi-Yong, Yu Yu-De. Chin. Phys. B, 2015, 24(10): 106801.
[7] On-chip optical pulse shaper for arbitrary waveform generation
Liao Sha-Sha (廖莎莎), Yang Ting (杨婷), Dong Jian-Ji (董建绩). Chin. Phys. B, 2014, 23(7): 073201.
[8] High-efficiency focusing grating coupler with optimized ultra-short taper
Yang Biao (杨彪), Li Zhi-Yong (李智勇), Yu Yu-De (俞育德), Yu Jin-Zhong (余金中). Chin. Phys. B, 2014, 23(11): 114206.
[9] Ultrashort optical pulse shaper based on complex-modulated long-period-grating coupler
Dong Xiao-Wei (董小伟), Liu Wen-Kai (刘文楷). Chin. Phys. B, 2013, 22(2): 024210.
[10] High efficiency grating couplers based on shared process with CMOS MOSFETs
Qiu Chao (仇超), Sheng Zhen (盛振), Li Le (李乐), Albert Pang (彭树根), Wu Ai-Min (武爱民), Wang Xi (王曦), Zou Shi-Chang (邹世昌), Gan Fu-Wan (甘甫烷). Chin. Phys. B, 2013, 22(2): 024212.
[11] CMOS compatible highly efficient grating couplers with a stair-step blaze profile
Zhou Liang(周亮), Li Zhi-Yong(李智勇), Hu Ying-Tao(胡应涛), Xiong Kang(熊康), Fan Zhong-Chao(樊中朝), Han Wei-Hua(韩伟华), Yu Yu-De (俞育德), and Yu Jin-Zhong (余金中) . Chin. Phys. B, 2011, 20(7): 074212.
[12] A novel highly efficient grating coupler with large filling factor used for optoelectronic integration
Zhou Liang(周亮), Li Zhi-Yong(李智勇), and Zhu Yu(朱宇), Li Yun-Tao(李运涛), Fan Zhong-Cao(樊中朝), Han Wei-Hua(韩伟华), Yu Yu-De(俞育德), and Yu Jin-Zhong(余金中). Chin. Phys. B, 2010, 19(12): 124214.
[13] High efficiency and broad bandwidth grating coupler between nanophotonic waveguide and fibre
Zhu Yu(朱宇), Xu Xue-Jun(徐学俊), Li Zhi-Yong(李智勇), Zhou Liang(周亮), Han Wei-Hua(韩伟华),Fan Zhong-Chao(樊中朝),Yu Yu-De(俞育德), and Yu Jin-Zhong(余金中) . Chin. Phys. B, 2010, 19(1): 014219.
No Suggested Reading articles found!