Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(2): 023301    DOI: 10.1088/1674-1056/22/2/023301
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Quantum chemical calculations of bond dissociation energies for COOH scission and electronic structure in some acids

Zeng Hui (曾晖), Zhao Jun (赵俊), Xiao Xun (肖循)
College of Physical Science and Technology, Yangtze University, Jingzhou 434023, China
Abstract  Quantum chemical calculations are performed to investigate the equilibrium C-COOH bond distances and the bond dissociation energies (BDEs) for 15 acids. These compounds are studied by utilizing the hybrid density functional theory (DFT) (B3LYP, B3PW91, B3P86, PBE1PBE) and the complete basis set (CBS-Q) method in conjunction with the 6-311G** basis as DFT methods have been found to have low basis sets sensitivity for small and medium molecules in our previous work. Comparisons between the computational results and the experimental values reveal that CBS-Q method, which can produce reasonable BDEs for some systems in our previous work, seems unable to predict accurate BDEs here. However, the B3P86 calculated results accord very well with the experimental values, within an average absolute errors of 2.3 kcal/mol. Thus, B3P86 method is suitable for computing the reliable BDEs of C-COOH bond for carboxylic acid compounds. In addition, the energy gaps between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of studied compounds are estimated, based on which the relative thermal stabilities of the studied acids are also discussed.
Keywords:  bond dissociation energy      density functional theory      CBS-Q method  
Received:  28 May 2012      Revised:  07 August 2012      Accepted manuscript online: 
PACS:  33.15.Fm (Bond strengths, dissociation energies)  
  31.15.E-  
  31.15.A- (Ab initio calculations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11047176) and the Research Foundation of Education Bureau of Hubei Province, China (Grant Nos. Q20111305, B20101303, T201204, B20111304, and Q20091215).
Corresponding Authors:  Zhao Jun     E-mail:  zhaojun@yangtzeu.edu.cn

Cite this article: 

Zeng Hui (曾晖), Zhao Jun (赵俊), Xiao Xun (肖循) Quantum chemical calculations of bond dissociation energies for COOH scission and electronic structure in some acids 2013 Chin. Phys. B 22 023301

[1] Miao S and Shanks B H 2011 J. Catal. 279 136
[2] Tsai Y, Lin H and Lee M 2011 Chem. Eng. J. 171 1367
[3] Shin C H, Kim J Y, Kim H S, Monhapatra D, Ahn J W and Bae W 2009 J. Hazard. Mater. 162 1278
[4] Baker M and Gabryelski W 2007 Int. J. Mass Spectrom. 262 128
[5] Ho C, Shieh C, Tseng C, Chen Y and Lin J 2009 J. Catal. 261 150
[6] Barnes N, de Doz M G and Srlimo H N 1997 Fluid Phase Equilib. 134 201
[7] Lee P and Che C 2009 J. Hazard. Mater. 165 156
[8] Shan D, Li Q, Xue H and Cosnier S 2008 Sens. Actuators. B 134 1016
[9] Velegraki T, Balayiannis G, Diamadopoulos E, Katsaounis A and Mantzavinos D 2010 Chem. Eng. J. 160 538
[10] Velegraki T and Mantzavinos D 2008 Chem. Eng. J. 140 15
[11] Ribeiro da Silva M A V, Lobo Ferreira I M C, Lima L M S and Sousa S M M 2008 J. Chem. Thermodyn. 40 137
[12] Wang Z L, Niu C J, Liu Z H and Ni J Z 1996 Thermochim. Acta 282 353
[13] Yu G, Chowdhury M M, Abdellatif K R A, Dong Y, Praveen Rao P N, Das D, Velazquez C A, Suresh M R and Knaus E E 2010 Bioorg. Med. Chem. Lett. 20 896
[14] Badawi H M and Forner W 2011 Spectrochim. Acta Part A 78 1162
[15] Zhu Y J, Zhou H T, Hu Y H, Tang J Y, Su M X, Guo Y J, Chen Q X and Liu B 2011 Food Chem. 124 298
[16] Pedley J B, Naylor R D and Kirby S P 1986 Thermochemical Data of Organic Compounds, 2nd edn. (New York: Chapman and Hall)
[17] Jursic B S and Martin R M 1996 Int. J. Quantum Chem. 59 495
[18] Jursic B S 1996 J. Mol. Struct. (Theochem) 366 103
[19] Feng Y, Wang J, Liu L and Guo Q X 2003 J. Phys. Org. Chem. 16 883
[20] Maung N 1999 J. Mol. Strcut. (Theochem) 460 159
[21] Shao J S, Cheng X L and Yang X D 2005 J. Mol. Struct. (Cheochem) 755 127
[22] Zeng H and Zhao J 2012 Chin. Phys. B 21 078202
[23] Liu D D and Zhang H 2011 Chin. Phys. B 20 097105
[24] Zhang L, Zhu Z H and Zhang Q 2011 Chin. Phys. B 20 063102
[25] Li Z G, Mang C Y and Wu K C 2010 Chin. Phys. B 19 043601
[26] Zhao J, Cheng X L and Yang X D 2006 J. Mol. Struct. (Theochem) 766 87
[27] Zhao J, Zhang K S, Cheng X L and Yang X D 2008 J. Mol. Struct. (Theochem) 863 133
[28] Zhao J, Xu D H, Zhang K S and Cheng X L 2009 J. Mol. Struct. (Theochem) 909 9
[29] Zhao J, Zeng H and Cheng X L 2012 Int. J. Quantum Chem. 112 665
[30] Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J J A, Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C and Pople J A 2003 GAUSSIAN 03, Revision B.02, Gaussian Inc., Pittsburgh, PA
[31] Beck A D 1993 J. Chem. Phys. 98 5648
[32] Lee C, Yang R G and Parr R G 1988 Phys. Rev. B 37 785
[33] Miehlich B, Savin A, Stoll H and Preuss H 1989 Chem. Phys. Lett. 157 200
[34] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[35] Perdew J P 1986 Phys. Rev. B 33 8822
[36] Perdew J P, Burke K and Ernzerhof M 1997 Phys. Rev. Lett. 78 1396
[37] Nyden N R and Petersson G A 1981 J. Chem. Phys. 75 1843
[38] Petersson G A and Al-Laham M A 1991 J. Chem. Phys. 94 6081
[39] Petersson G A, Tensfeldt T and Montgomery J A 1991 J. Chem. Phys. 94 6091
[40] Montgomery J A, Ochetrski J W and Petersson G A 1994 J. Chem. Phys. 101 5900
[41] Roothan C C 1951 Rev. Mod. Phys. 23 69
[42] Moller C and Plesset M S 1934 Phys. Rev. 46 618
[43] Head-Gordon M, Pople J A and Frisch M J 1988 Chem. Phys. Lett. 153 503
[44] Frisch M J, Head-Gordon M and Pople J A 1990 Chem. Phys. Lett. 166 275
[45] Pople J A, Head-Gordon M and Raghavachari K 1987 J. Chem. Phys. 87 5968
[46] Krishnan R and Pople J A 1978 Int. J. Quantum Chem. 14 91
[47] Foresman J B and Frisch E 1996 Exploring Chemistry with Electronic Structure Methods, 2nd edn. (Pittsburgh: Gaussian Inc.)
[48] Blanksby S J and Ellison G B 2003 Acc. Chem. Res. 36 255
[49] http://srdata.nist.gov/cccbdb/
[50] Luo Y R 2003 Handbook of Bond Dissociation Energies in Organic Compounds (New York: CRC Press)
[51] Jursic B S 1998 J. Mol. Struct. (Theochem) 422 253
[52] Korolkovas A 1982 Fundamentos da Farmacologia Molecular (Guanabara: Rio de Janeiro)
[53] Clare B 1994 Theor. Chim. Acta 87 415
[54] Da Silva A B F 1985 M. S. Thesis, Universidade de Säo Paulo, Brazil
[55] Zhou Z and Parr R G 1990 J. Am. Chem. Soc. 112 5720
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[3] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[9] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[12] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[13] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[14] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[15] Advances and challenges in DFT-based energy materials design
Jun Kang(康俊), Xie Zhang(张燮), and Su-Huai Wei(魏苏淮). Chin. Phys. B, 2022, 31(10): 107105.
No Suggested Reading articles found!