|
|
Low-energy structure in the ionization of argon: Comparison of experiment with theory |
Feng Li-Qiang (冯立强)a, Chu Tian-Shu (楚天舒)a b, Wang Li (王利)a |
a State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
b Institute for Computational Sciences and Engineering, Laboratory of New Fiber Materials and Modern Textiles, the Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071, China |
|
|
Abstract The above-threshold ionization of argon in an intense 70-fs, 400-nm linearly polarized laser pulse has been investigated by the velocity map imaging techniques, combined with an attosecond-resolution quantum wave packet dynamics method. There is a quantitative agreement in all dominant features between the experiment and the theory. Moreover, a peak-splitting phenomenon in the first energy peak has been observed at high pulse intensity. Further, through the theoretical analysis, an ac Stark splitting with evident resonant and nonresonant ionization pathways has been found to be the physical reason for the experimental observations.
|
Received: 04 July 2012
Revised: 03 August 2012
Accepted manuscript online:
|
PACS:
|
33.80.Rv
|
(Multiphoton ionization and excitation to highly excited states (e.g., Rydberg states))
|
|
33.60.+q
|
(Photoelectron spectra )
|
|
Fund: Project supported by the National Natural Science Foundations of China (Grant Nos. 10874096 and 20633070). |
Corresponding Authors:
Chu Tian-Shu, Wang Li
E-mail: tschu@dicp.ac.cn; tschu008@163.com; liwangye@dicp.ac.cn
|
Cite this article:
Feng Li-Qiang (冯立强), Chu Tian-Shu (楚天舒), Wang Li (王利) Low-energy structure in the ionization of argon: Comparison of experiment with theory 2013 Chin. Phys. B 22 023302
|
[1] |
Kothari H N and Joshipura K N 2010 Chin. Phys. B 19 103402
|
[2] |
Chang P S, Song F Z, Jian H C and Xiao X Z 2011 Chin. Phys. B 20 113201
|
[3] |
Wang D H 2011 Chin. Phys. B 20 013403
|
[4] |
Wu J H and Yuan J M 2009 Chin. Phys. B 18 5283
|
[5] |
Keldysh L V 1965 Sov. Phys. JETP 20 1307
|
[6] |
Chen J 2002 Phys. Rev. A 66 053415
|
[7] |
Moshammer R, Ullrich J, Feuerstein B, Fischer D, Dorn A, Schröter C D, Crespo Lopez-Urrutia J R, Hoehr C, Rottke H, Trump C, Wittmann M, Korn G and Sandner W 2003 Phys. Rev. Lett. 91 113002
|
[8] |
Agostini P, Fabre F, Mainfray G, Petite G and Rahman N K 1979 Phys. Rev. Lett. 42 1127
|
[9] |
Muller H G 1999 Phys. Rev. A 60 1341
|
[10] |
Quan W, Lin Z, Wu M, Kang H, Liu H, Liu X, Chen J, Liu J, He X T, Chen S G, Xiong H, Guo L, Xu H, Fu Y, Cheng Y and Xu Z Z 2009 Phys. Rev. Lett. 103 093001
|
[11] |
Corkum P B 1993 Phys. Rev. Lett. 71 1994
|
[12] |
Morishita T, Chen Z.J, Watanabe S and Lin C D 2007 Phys. Rev. A 75 023407
|
[13] |
Nepstad R, Hart H W and McCann J F 2009 J. Phys. B: At. Mol. Opt. Phys. 42 145603
|
[14] |
Wiehle R, Witzel B, Helm H and Cormier E 2003 Phys. Rev. A 67 063405
|
[15] |
Lemell C, Dimitriou K I, Tong X M, Nagele S, Kartashov D V, Burgdörfer J and Gräfe S 2012 Phys. Rev. A 85 011403
|
[16] |
Guo W, Zhu J, Wang B, Wang Y and Wang L 2008 Phys. Rev. A 77 033415
|
[17] |
Lu R F, Zhang P Y and Han K L 2008 Phys. Rev. E 77 066701
|
[18] |
Hu J, Han K L and He G Z 2005 Phys. Rev. Lett. 95 123001
|
[19] |
Meng Q T, Yang G H, Sun H L, Han K L and Lou N Q 2003 Phys. Rev. A 67 063202
|
[20] |
Muller H G and Kooiman F C 1998 Phys. Rev. Lett. 81 1207
|
[21] |
Feng L Q and Chu T S 2011 Phys. Rev. A 84 053853
|
[22] |
Lu R F, He H X, Guo Y H and Han K L 2009 J. Phys. B: At. Mol. Opt. Phys. 42 225601
|
[23] |
He H X, Lu R F, Zhang P Y, Han K L and He G Z 2012 J. Chem. Phys. 136 024311
|
[24] |
Hu J, Wang M S, Han K L and He G Z 2006 Phys. Rev. A 74 063417
|
[25] |
He H X, Lu R F, Zhang P Y, Guo Y H, Han K L and He G Z 2011 Phys. Rev. A 84 033418
|
[26] |
Zhang H, Han K L, Zhao Y, He G Z and Lou N Q 1997 Chem. Phys. Lett. 271 204
|
[27] |
Hu J, Meng Q T and Han K L 2007 Chem. Phys. Lett. 442 17
|
[28] |
Guo Y H, Lu R F, Han K L and He G Z 2009 Int. J. Quantum Chem. 109 3410
|
[29] |
Tong X M and Lin C D 2005 J. Phys. B: At. Mol. Opt. Phys. 38 2593
|
[30] |
Chu T S, Zhang Y and Han K L 2006 Int. Rev. Phys. Chem. 25 201
|
[31] |
Xie T X, Zhang Y, Zhao M Y and Han K L 2003 Phys. Chem. Chem. Phys. 5 2034
|
[32] |
Chen X S, Sanpera A and Burnett K 1995 Phys. Rev. A 51 4824
|
[33] |
Minnhagen L 1973 J. Opt. Soc. Am. 63 1185
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|