|
|
Quantum chemical calculations of bond dissociation energies for COOH scission and electronic structure in some acids |
Zeng Hui (曾晖), Zhao Jun (赵俊), Xiao Xun (肖循) |
College of Physical Science and Technology, Yangtze University, Jingzhou 434023, China |
|
|
Abstract Quantum chemical calculations are performed to investigate the equilibrium C-COOH bond distances and the bond dissociation energies (BDEs) for 15 acids. These compounds are studied by utilizing the hybrid density functional theory (DFT) (B3LYP, B3PW91, B3P86, PBE1PBE) and the complete basis set (CBS-Q) method in conjunction with the 6-311G** basis as DFT methods have been found to have low basis sets sensitivity for small and medium molecules in our previous work. Comparisons between the computational results and the experimental values reveal that CBS-Q method, which can produce reasonable BDEs for some systems in our previous work, seems unable to predict accurate BDEs here. However, the B3P86 calculated results accord very well with the experimental values, within an average absolute errors of 2.3 kcal/mol. Thus, B3P86 method is suitable for computing the reliable BDEs of C-COOH bond for carboxylic acid compounds. In addition, the energy gaps between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of studied compounds are estimated, based on which the relative thermal stabilities of the studied acids are also discussed.
|
Received: 28 May 2012
Revised: 07 August 2012
Accepted manuscript online:
|
PACS:
|
33.15.Fm
|
(Bond strengths, dissociation energies)
|
|
31.15.E-
|
|
|
31.15.A-
|
(Ab initio calculations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11047176) and the Research Foundation of Education Bureau of Hubei Province, China (Grant Nos. Q20111305, B20101303, T201204, B20111304, and Q20091215). |
Corresponding Authors:
Zhao Jun
E-mail: zhaojun@yangtzeu.edu.cn
|
Cite this article:
Zeng Hui (曾晖), Zhao Jun (赵俊), Xiao Xun (肖循) Quantum chemical calculations of bond dissociation energies for COOH scission and electronic structure in some acids 2013 Chin. Phys. B 22 023301
|
[1] |
Miao S and Shanks B H 2011 J. Catal. 279 136
|
[2] |
Tsai Y, Lin H and Lee M 2011 Chem. Eng. J. 171 1367
|
[3] |
Shin C H, Kim J Y, Kim H S, Monhapatra D, Ahn J W and Bae W 2009 J. Hazard. Mater. 162 1278
|
[4] |
Baker M and Gabryelski W 2007 Int. J. Mass Spectrom. 262 128
|
[5] |
Ho C, Shieh C, Tseng C, Chen Y and Lin J 2009 J. Catal. 261 150
|
[6] |
Barnes N, de Doz M G and Srlimo H N 1997 Fluid Phase Equilib. 134 201
|
[7] |
Lee P and Che C 2009 J. Hazard. Mater. 165 156
|
[8] |
Shan D, Li Q, Xue H and Cosnier S 2008 Sens. Actuators. B 134 1016
|
[9] |
Velegraki T, Balayiannis G, Diamadopoulos E, Katsaounis A and Mantzavinos D 2010 Chem. Eng. J. 160 538
|
[10] |
Velegraki T and Mantzavinos D 2008 Chem. Eng. J. 140 15
|
[11] |
Ribeiro da Silva M A V, Lobo Ferreira I M C, Lima L M S and Sousa S M M 2008 J. Chem. Thermodyn. 40 137
|
[12] |
Wang Z L, Niu C J, Liu Z H and Ni J Z 1996 Thermochim. Acta 282 353
|
[13] |
Yu G, Chowdhury M M, Abdellatif K R A, Dong Y, Praveen Rao P N, Das D, Velazquez C A, Suresh M R and Knaus E E 2010 Bioorg. Med. Chem. Lett. 20 896
|
[14] |
Badawi H M and Forner W 2011 Spectrochim. Acta Part A 78 1162
|
[15] |
Zhu Y J, Zhou H T, Hu Y H, Tang J Y, Su M X, Guo Y J, Chen Q X and Liu B 2011 Food Chem. 124 298
|
[16] |
Pedley J B, Naylor R D and Kirby S P 1986 Thermochemical Data of Organic Compounds, 2nd edn. (New York: Chapman and Hall)
|
[17] |
Jursic B S and Martin R M 1996 Int. J. Quantum Chem. 59 495
|
[18] |
Jursic B S 1996 J. Mol. Struct. (Theochem) 366 103
|
[19] |
Feng Y, Wang J, Liu L and Guo Q X 2003 J. Phys. Org. Chem. 16 883
|
[20] |
Maung N 1999 J. Mol. Strcut. (Theochem) 460 159
|
[21] |
Shao J S, Cheng X L and Yang X D 2005 J. Mol. Struct. (Cheochem) 755 127
|
[22] |
Zeng H and Zhao J 2012 Chin. Phys. B 21 078202
|
[23] |
Liu D D and Zhang H 2011 Chin. Phys. B 20 097105
|
[24] |
Zhang L, Zhu Z H and Zhang Q 2011 Chin. Phys. B 20 063102
|
[25] |
Li Z G, Mang C Y and Wu K C 2010 Chin. Phys. B 19 043601
|
[26] |
Zhao J, Cheng X L and Yang X D 2006 J. Mol. Struct. (Theochem) 766 87
|
[27] |
Zhao J, Zhang K S, Cheng X L and Yang X D 2008 J. Mol. Struct. (Theochem) 863 133
|
[28] |
Zhao J, Xu D H, Zhang K S and Cheng X L 2009 J. Mol. Struct. (Theochem) 909 9
|
[29] |
Zhao J, Zeng H and Cheng X L 2012 Int. J. Quantum Chem. 112 665
|
[30] |
Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J J A, Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C and Pople J A 2003 GAUSSIAN 03, Revision B.02, Gaussian Inc., Pittsburgh, PA
|
[31] |
Beck A D 1993 J. Chem. Phys. 98 5648
|
[32] |
Lee C, Yang R G and Parr R G 1988 Phys. Rev. B 37 785
|
[33] |
Miehlich B, Savin A, Stoll H and Preuss H 1989 Chem. Phys. Lett. 157 200
|
[34] |
Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
|
[35] |
Perdew J P 1986 Phys. Rev. B 33 8822
|
[36] |
Perdew J P, Burke K and Ernzerhof M 1997 Phys. Rev. Lett. 78 1396
|
[37] |
Nyden N R and Petersson G A 1981 J. Chem. Phys. 75 1843
|
[38] |
Petersson G A and Al-Laham M A 1991 J. Chem. Phys. 94 6081
|
[39] |
Petersson G A, Tensfeldt T and Montgomery J A 1991 J. Chem. Phys. 94 6091
|
[40] |
Montgomery J A, Ochetrski J W and Petersson G A 1994 J. Chem. Phys. 101 5900
|
[41] |
Roothan C C 1951 Rev. Mod. Phys. 23 69
|
[42] |
Moller C and Plesset M S 1934 Phys. Rev. 46 618
|
[43] |
Head-Gordon M, Pople J A and Frisch M J 1988 Chem. Phys. Lett. 153 503
|
[44] |
Frisch M J, Head-Gordon M and Pople J A 1990 Chem. Phys. Lett. 166 275
|
[45] |
Pople J A, Head-Gordon M and Raghavachari K 1987 J. Chem. Phys. 87 5968
|
[46] |
Krishnan R and Pople J A 1978 Int. J. Quantum Chem. 14 91
|
[47] |
Foresman J B and Frisch E 1996 Exploring Chemistry with Electronic Structure Methods, 2nd edn. (Pittsburgh: Gaussian Inc.)
|
[48] |
Blanksby S J and Ellison G B 2003 Acc. Chem. Res. 36 255
|
[49] |
http://srdata.nist.gov/cccbdb/
|
[50] |
Luo Y R 2003 Handbook of Bond Dissociation Energies in Organic Compounds (New York: CRC Press)
|
[51] |
Jursic B S 1998 J. Mol. Struct. (Theochem) 422 253
|
[52] |
Korolkovas A 1982 Fundamentos da Farmacologia Molecular (Guanabara: Rio de Janeiro)
|
[53] |
Clare B 1994 Theor. Chim. Acta 87 415
|
[54] |
Da Silva A B F 1985 M. S. Thesis, Universidade de Säo Paulo, Brazil
|
[55] |
Zhou Z and Parr R G 1990 J. Am. Chem. Soc. 112 5720
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|