Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(2): 028101    DOI: 10.1088/1674-1056/22/2/028101
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Study on the relationships between Raman shifts and temperature range for a-plane GaN using temperature-dependent Raman scattering

Wang Dang-Hui (王党会)a b, Xu Sheng-Rui (许晟瑞)a, Hao Yue (郝跃)a, Zhang Jin-Cheng (张进成)a, Xu Tian-Han (许天旱)b, Lin Zhi-Yu (林志宇)a, Zhou Hao (周昊)a, Xue Xiao-Yong (薛晓咏 )a
a State Key Laboratory of Fundamental Science on Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China;
b School of Materials Science and Engineering, Xi'an Shiyou University, Xi'an 710065, China
Abstract  In this paper, Raman shifts of a-plane GaN layers grown on r-plane sapphire substrates by low-pressure metal-organic chemical vapor deposition (LPMOCVD) are investigated. We compare the crystal qualities and study the relationships between Raman shift and temperature for conventional a-plane GaN epilayer and insertion AlN/AlGaN superlattice layers for a-plane GaN epilayer using temperature-dependent Raman scattering in a temperature range from 83 K to 503 K. The temperature-dependences of GaN phonon modes (A1 (TO), E2 (high), and E1 (TO)) and the linewidths of E2 (high) phonon peak are studied. The results indicate that there exist two mechanisms between phonon peaks in the whole temperature range, and the relationship can be fitted to the pseudo-Voigt function. From analytic results we find a critical temperature existing in the relationship, which can characterize the anharmonic effects of a-plane GaN in different temperature ranges. In the range of higher temperature, the relationship exhibits an approximately linear behavior, which is consistent with the analyzed results theoretically.
Keywords:  metal-organic chemical vapor deposition      Raman shift      crystal quality      anharmonic effect  
Received:  29 April 2012      Revised:  09 August 2012      Accepted manuscript online: 
PACS:  81.15.Kk (Vapor phase epitaxy; growth from vapor phase)  
  78.55.Cr (III-V semiconductors)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. K50511250002); the National Key Science & Technology Special Project, China (Grant No. 2008ZX01002-002); the Major Program and State Key Program of the National Natural Science Foundation of China (Grant Nos. 60890191 and 60736033); and the Science Fund for Youths Scholars (Grant Nos. 61204006).
Corresponding Authors:  Wang Dang-Hui     E-mail:  wdhyxp@163.com

Cite this article: 

Wang Dang-Hui (王党会), Xu Sheng-Rui (许晟瑞), Hao Yue (郝跃), Zhang Jin-Cheng (张进成), Xu Tian-Han (许天旱), Lin Zhi-Yu (林志宇), Zhou Hao (周昊), Xue Xiao-Yong (薛晓咏 ) Study on the relationships between Raman shifts and temperature range for a-plane GaN using temperature-dependent Raman scattering 2013 Chin. Phys. B 22 028101

[1] Gao H Y, Yan F W, Zhang H X, Li J M, Wang J X and Yan J C 2007 J. Appl. Phys. 101 103533
[2] Zhang J F, Xu S R, Zhang J C and Hao Y 2011 Chin. Phys. B 20 057801
[3] Xu S R, Hao Y, Zhang J C, Xue X Y, Lin Z Y, Liu Z Y, Ma J C, Lü L, Li P X, He Q and Li J T 2011 Chin. Phys. B 20 107802
[4] Netzela C, Wernicke T, Zeimer U, Brunner F, Weyers M and Kneissl M 2008 J. Cryst. Growth 310 8
[5] Kazuhide K, Shizutoshi A and Kazuhiro O 2007 J. Cryst. Growth 298 293
[6] Kuroda M and Ishida H 2007 J. Appl. Phys. 102 093703
[7] Wang H M, Zhang J P, Chen C Q, Fareed Q, Yang J W and Asif K M 2002 Appl. Phys. Lett. 81 22
[8] Sun W H, Zhang J, Yang J, Maruska H P, Khan A, Liu R and Ponce F A 2005 Appl. Phys. Lett. 87 211915
[9] Einfeldt S, Heinke H, Kirchner V and Hommel D 2001 J. Appl. Phys. 89 2164
[10] Xu S R, Zhang J C, Li Z M, Zhou X W, Xu Z H, Zhao G C, Zhu Q W, Zhang J F, Mao W and Hao Y 2009 Acta Phys. Sin. 58 5705 (in Chinese)
[11] Yan F W, Gao H Y, Zhang H X, Wang G H, Yang F H, Yan J C, Wang J X, Zeng Y P and Li J M 2007 J. Appl. Phys. 101 023506
[12] Xu S R, Hao Y, Zhang J C, Zhou X W, Yang L A, Zhang J F, Duan H T, Li Z M, Mao W, Hu S G, Cao Y R, Zhu Q W, Xu Z H and Gu W P 2009 J. Cryst. Growth. 311 3622
[13] Xu S R, Hao Y, Zhang J C, Zhou X W, Cao Y R, Ou X X, Mao W, Du D C and Wang H 2010 Chin. Phys. B 19 107204
[14] Song D Y, Basavaraj M, Nikishin S A, Holtz M, Soukhoveev V, Usikov A and Dmitriev V 2006 J. Appl. Phys. 100 113504
[15] Song D Y, Nikishin S A, Holtz M, Soukhoveev V, Usikov A and Dmitriev V 2007 J. Appl. Phys. 101 053535
[16] Irmer G, Brumme T, Herms M, Wernicke T, Kneissl M and Weyers M 2008 J. Mater. Sci: Mater. Electron. 19 51
[17] Zhang Y C, Xing Z G, Ma Z G, Chen Y, Ding G J, Xu P Q, Dong C M, Chen H and Le X Y 2010 Sci. Chin.: Phys. Mech. Astron. 53 465
[18] Wagner J M and Bechstedt F 2000 Appl. Phys. Lett. 77 346
[19] Kaganer V M, Brandt O, Trampert A and Ploog K H 2005 Phys. Rev. B 72 045423
[20] Xue X Y, Xu S R, Zhang J C, Lin Z Y, Ma J C, Liu Z Y, Xue J S and Hao Y 2012 Chin. Phys. B 21 027803
[21] Giehler M, Ramsteiner M and Waltereit P 2001 J. Appl. Phys. 89 3634
[22] Gorczyca I, Christensen N E, Peltzery Blancá E L and Rodriguez C O 1995 Phys. Rev. B 51 11936
[1] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[2] Characterization of the N-polar GaN film grown on C-plane sapphire and misoriented C-plane sapphire substrates by MOCVD
Xiaotao Hu(胡小涛), Yimeng Song(宋祎萌), Zhaole Su(苏兆乐), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Yang Jiang(江洋), Yangfeng Li(李阳锋), and Hong Chen(陈弘). Chin. Phys. B, 2022, 31(3): 038103.
[3] Effect of oxygen on regulation of properties of moderately boron-doped diamond films
Dong-Yang Liu(刘东阳), Li-Cai Hao(郝礼才), Wei-Kang Zhao(赵伟康), Zi-Ang Chen(陈子昂), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东), Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2022, 31(12): 128104.
[4] High-responsivity solar-blind photodetector based on MOCVD-grown Si-doped β-Ga2O3 thin film
Yu-Song Zhi(支钰崧), Wei-Yu Jiang(江为宇), Zeng Liu(刘增), Yuan-Yuan Liu(刘媛媛), Xu-Long Chu(褚旭龙), Jia-Hang Liu(刘佳航), Shan Li(李山), Zu-Yong Yan(晏祖勇), Yue-Hui Wang(王月晖), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2021, 30(5): 057301.
[5] Continuous-wave operation of InAs/InP quantum dot tunable external-cavity laser grown by metal-organic chemical vapor deposition
Yan Wang(王岩), Shuai Luo(罗帅), Haiming Ji(季海铭), Di Qu(曲迪), and Yidong Huang(黄翊东). Chin. Phys. B, 2021, 30(1): 018106.
[6] Short-wavelength infrared InAs/GaSb superlattice hole avalanche photodiode
Jia-Feng Liu(刘家丰), Ning-Tao Zhang(张宁涛), Yan Teng(滕), Xiu-Jun Hao(郝修军), Yu Zhao(赵宇), Ying Chen(陈影), He Zhu(朱赫), Hong Zhu(朱虹), Qi-Hua Wu(吴启花), Xin Li(李欣), Bai-Le Chen(陈佰乐)§, and Yong Huang(黄勇). Chin. Phys. B, 2020, 29(11): 117301.
[7] Low temperature photoluminescence study of GaAs defect states
Jia-Yao Huang(黄佳瑶), Lin Shang(尚林), Shu-Fang Ma(马淑芳), Bin Han(韩斌), Guo-Dong Wei(尉国栋), Qing-Ming Liu(刘青明), Xiao-Dong Hao(郝晓东), Heng-Sheng Shan(单恒升), Bing-She Xu(许并社). Chin. Phys. B, 2020, 29(1): 010703.
[8] Thermophysical properties of iridium at finite temperature
Priyank Kumar, N K Bhatt, P R Vyas, V B Gohel. Chin. Phys. B, 2016, 25(11): 116401.
[9] Hetero-epitaxy of Lg=0.13-μm metamorphic AlInAs/GaInAs HEMT on Si substrates by MOCVD for logic applications
Huang Jie (黄杰), Li Ming (黎明), Zhao Qian (赵倩), Gu Wen-Wen (顾雯雯), Lau Kei-May (刘纪美). Chin. Phys. B, 2015, 24(8): 087305.
[10] Normally-off metamorphic AlInAs/AlInAs HEMTs on Si substrates grown by MOCVD
Huang Jie (黄杰), Li Ming (黎明), Lau Kei-May (刘纪美). Chin. Phys. B, 2015, 24(7): 078102.
[11] Effect of pressure on the semipolar GaN (10-11) growth mode on patterned Si substrates
Liu Jian-Ming (刘建明), Zhang Jie (张洁), Lin Wen-Yu (林文禹), Ye Meng-Xin (叶孟欣), Feng Xiang-Xu (冯向旭), Zhang Dong-Yan (张东炎), Steve Ding, Xu Chen-Ke (徐宸科), Liu Bao-Lin (刘宝林). Chin. Phys. B, 2015, 24(5): 057801.
[12] High-crystalline GaSb epitaxial films grown on GaAs(001) substrates by low-pressure metal-organic chemical vapor deposition
Wang Lian-Kai (王连锴), Liu Ren-Jun (刘仁俊), Lü You (吕游), Yang Hao-Yu (杨皓宇), Li Guo-Xing (李国兴), Zhang Yuan-Tao (张源涛), Zhang Bao-Lin (张宝林). Chin. Phys. B, 2015, 24(1): 018102.
[13] Improved crystal quality of GaN film with the in-plane lattice-matched In0.17Al0.83N interlayer grown on sapphire substrate using pulsed metal–organic chemical vapor deposition
Li Liang (李亮), Yang Lin-An (杨林安), Xue Jun-Shuai (薛军帅), Cao Rong-Tao (曹荣涛), Xu Sheng-Rui (许晟瑞), Zhang Jin-Cheng (张进成), Hao Yue (郝跃). Chin. Phys. B, 2014, 23(6): 067103.
[14] Improvement in a-plane GaN crystalline quality using wet etching method
Cao Rong-Tao (曹荣涛), Xu Sheng-Rui (许晟瑞), Zhang Jin-Cheng (张进成), Zhao Yi (赵一), Xue Jun-Shuai (薛军帅), Ha Wei (哈微), Zhang Shuai (张帅), Cui Pei-Shui (崔培水), Wen Hui-Juan (温慧娟), Chen Xing (陈兴). Chin. Phys. B, 2014, 23(4): 047804.
[15] Mid-gap photoluminescence and magnetic properties of GaMnN films grown by metal-organic chemical vapor deposition
Xing Hai-Ying (邢海英), Xu Zhang-Cheng (徐章程), Cui Ming-Qi (崔明启), Xie Yu-Xin (谢玉芯), Zhang Guo-Yi (张国义). Chin. Phys. B, 2014, 23(10): 107803.
No Suggested Reading articles found!