INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Study on the relationships between Raman shifts and temperature range for a-plane GaN using temperature-dependent Raman scattering |
Wang Dang-Hui (王党会)a b, Xu Sheng-Rui (许晟瑞)a, Hao Yue (郝跃)a, Zhang Jin-Cheng (张进成)a, Xu Tian-Han (许天旱)b, Lin Zhi-Yu (林志宇)a, Zhou Hao (周昊)a, Xue Xiao-Yong (薛晓咏 )a |
a State Key Laboratory of Fundamental Science on Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China; b School of Materials Science and Engineering, Xi'an Shiyou University, Xi'an 710065, China |
|
|
Abstract In this paper, Raman shifts of a-plane GaN layers grown on r-plane sapphire substrates by low-pressure metal-organic chemical vapor deposition (LPMOCVD) are investigated. We compare the crystal qualities and study the relationships between Raman shift and temperature for conventional a-plane GaN epilayer and insertion AlN/AlGaN superlattice layers for a-plane GaN epilayer using temperature-dependent Raman scattering in a temperature range from 83 K to 503 K. The temperature-dependences of GaN phonon modes (A1 (TO), E2 (high), and E1 (TO)) and the linewidths of E2 (high) phonon peak are studied. The results indicate that there exist two mechanisms between phonon peaks in the whole temperature range, and the relationship can be fitted to the pseudo-Voigt function. From analytic results we find a critical temperature existing in the relationship, which can characterize the anharmonic effects of a-plane GaN in different temperature ranges. In the range of higher temperature, the relationship exhibits an approximately linear behavior, which is consistent with the analyzed results theoretically.
|
Received: 29 April 2012
Revised: 09 August 2012
Accepted manuscript online:
|
PACS:
|
81.15.Kk
|
(Vapor phase epitaxy; growth from vapor phase)
|
|
78.55.Cr
|
(III-V semiconductors)
|
|
Fund: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. K50511250002); the National Key Science & Technology Special Project, China (Grant No. 2008ZX01002-002); the Major Program and State Key Program of the National Natural Science Foundation of China (Grant Nos. 60890191 and 60736033); and the Science Fund for Youths Scholars (Grant Nos. 61204006). |
Corresponding Authors:
Wang Dang-Hui
E-mail: wdhyxp@163.com
|
Cite this article:
Wang Dang-Hui (王党会), Xu Sheng-Rui (许晟瑞), Hao Yue (郝跃), Zhang Jin-Cheng (张进成), Xu Tian-Han (许天旱), Lin Zhi-Yu (林志宇), Zhou Hao (周昊), Xue Xiao-Yong (薛晓咏 ) Study on the relationships between Raman shifts and temperature range for a-plane GaN using temperature-dependent Raman scattering 2013 Chin. Phys. B 22 028101
|
[1] |
Gao H Y, Yan F W, Zhang H X, Li J M, Wang J X and Yan J C 2007 J. Appl. Phys. 101 103533
|
[2] |
Zhang J F, Xu S R, Zhang J C and Hao Y 2011 Chin. Phys. B 20 057801
|
[3] |
Xu S R, Hao Y, Zhang J C, Xue X Y, Lin Z Y, Liu Z Y, Ma J C, Lü L, Li P X, He Q and Li J T 2011 Chin. Phys. B 20 107802
|
[4] |
Netzela C, Wernicke T, Zeimer U, Brunner F, Weyers M and Kneissl M 2008 J. Cryst. Growth 310 8
|
[5] |
Kazuhide K, Shizutoshi A and Kazuhiro O 2007 J. Cryst. Growth 298 293
|
[6] |
Kuroda M and Ishida H 2007 J. Appl. Phys. 102 093703
|
[7] |
Wang H M, Zhang J P, Chen C Q, Fareed Q, Yang J W and Asif K M 2002 Appl. Phys. Lett. 81 22
|
[8] |
Sun W H, Zhang J, Yang J, Maruska H P, Khan A, Liu R and Ponce F A 2005 Appl. Phys. Lett. 87 211915
|
[9] |
Einfeldt S, Heinke H, Kirchner V and Hommel D 2001 J. Appl. Phys. 89 2164
|
[10] |
Xu S R, Zhang J C, Li Z M, Zhou X W, Xu Z H, Zhao G C, Zhu Q W, Zhang J F, Mao W and Hao Y 2009 Acta Phys. Sin. 58 5705 (in Chinese)
|
[11] |
Yan F W, Gao H Y, Zhang H X, Wang G H, Yang F H, Yan J C, Wang J X, Zeng Y P and Li J M 2007 J. Appl. Phys. 101 023506
|
[12] |
Xu S R, Hao Y, Zhang J C, Zhou X W, Yang L A, Zhang J F, Duan H T, Li Z M, Mao W, Hu S G, Cao Y R, Zhu Q W, Xu Z H and Gu W P 2009 J. Cryst. Growth. 311 3622
|
[13] |
Xu S R, Hao Y, Zhang J C, Zhou X W, Cao Y R, Ou X X, Mao W, Du D C and Wang H 2010 Chin. Phys. B 19 107204
|
[14] |
Song D Y, Basavaraj M, Nikishin S A, Holtz M, Soukhoveev V, Usikov A and Dmitriev V 2006 J. Appl. Phys. 100 113504
|
[15] |
Song D Y, Nikishin S A, Holtz M, Soukhoveev V, Usikov A and Dmitriev V 2007 J. Appl. Phys. 101 053535
|
[16] |
Irmer G, Brumme T, Herms M, Wernicke T, Kneissl M and Weyers M 2008 J. Mater. Sci: Mater. Electron. 19 51
|
[17] |
Zhang Y C, Xing Z G, Ma Z G, Chen Y, Ding G J, Xu P Q, Dong C M, Chen H and Le X Y 2010 Sci. Chin.: Phys. Mech. Astron. 53 465
|
[18] |
Wagner J M and Bechstedt F 2000 Appl. Phys. Lett. 77 346
|
[19] |
Kaganer V M, Brandt O, Trampert A and Ploog K H 2005 Phys. Rev. B 72 045423
|
[20] |
Xue X Y, Xu S R, Zhang J C, Lin Z Y, Ma J C, Liu Z Y, Xue J S and Hao Y 2012 Chin. Phys. B 21 027803
|
[21] |
Giehler M, Ramsteiner M and Waltereit P 2001 J. Appl. Phys. 89 3634
|
[22] |
Gorczyca I, Christensen N E, Peltzery Blancá E L and Rodriguez C O 1995 Phys. Rev. B 51 11936
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|