|
|
Relativistic calculations on the transition electric dipole moments and radiative lifetimes of the spin-forbidden transitions in the antimony hydride molecule |
Yong Liu(刘勇), Lu-Lu Li(李露露), Li-Dan Xiao(肖利丹), and Bing Yan(闫冰)† |
Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China |
|
|
Abstract Calculations on the spectroscopic constants and transition properties of the first three states (${\rm a}^{1}\Delta $, ${\rm b}^{1}\Sigma^{+}$, and X$^{3}\Sigma^-$) of the SbH molecule were performed under the relativistic framework using the exact two-component Hamiltonian (X2C). The potential energy curves in the Franck-Condon region were computed and compared with the previous values. Furthermore, the transition dipole moments for the weak spin-forbidden transitions (${\rm b}0^{+}$-X$_{1}0^{+}$, ${\rm b}0^{+}$-X$_{2}$1, X$_{1}0^{+}$-X$_{2}$1, and X$_{2}$1-${\rm a}$2) were reported. The spontaneous radiative lifetime of the ${\rm b}^{1}\Sigma^{+}$ ($\upsilon '=0$) state was calculated as 163.5 $\pm$ 7.5 μs, which is in reasonable agreement with the latest experimental value of 173 $\pm$ 3 μs. The spontaneous radiative lifetimes of the X$_{2}$1 ($\upsilon '=0$) state and the ${\rm a}$2 ($\upsilon '=0$) state were calculated to be 48.6 s and $\sim 8 $ ms, respectively. Our study is expected to be a benchmark transition property computation for comparison with other theoretical and experimental results. The datasets presented in this paper, including the transition dipole moments, are openly available at https://dx.doi.org/10.11922/sciencedb.j00113.00018.
|
Received: 06 March 2022
Revised: 06 May 2022
Accepted manuscript online: 12 May 2022
|
PACS:
|
31.15.A-
|
(Ab initio calculations)
|
|
31.15.aj
|
(Relativistic corrections, spin-orbit effects, fine structure; hyperfine structure)
|
|
33.70.Ca
|
(Oscillator and band strengths, lifetimes, transition moments, and Franck-Condon factors)
|
|
Fund: We are grateful for the computational support from the High Performance Computing Center (HPCC) of Jilin University and the high performance computing cluster Tiger@IAMP. Project supported by the National Natural Science Foundation of China (Grant No. 11874177). |
Corresponding Authors:
Bing Yan
E-mail: yanbing@jlu.edu.cn
|
Cite this article:
Yong Liu(刘勇), Lu-Lu Li(李露露), Li-Dan Xiao(肖利丹), and Bing Yan(闫冰) Relativistic calculations on the transition electric dipole moments and radiative lifetimes of the spin-forbidden transitions in the antimony hydride molecule 2022 Chin. Phys. B 31 083101
|
[1] Schwerdtfeger P 2004 Relativistic Electronic Structure Theory Part 2. Applications (Amsterdam:Elsevier) pp. 2-6 [2] Hess B A 2003 Relativistic Effects in Heavy-Element Chemistry and Physics (Chichester:Wiley) pp. 71-73 [3] Tian H C, Xu L Q and Zhu L F 2018 Chin. Phys. B 27 043101 [4] Basco N and Yee K K 1968 Spectrosc. Lett. 1 13 [5] Bollmark P and Lindgren B 1974 Phys. Scr. 10 325 [6] Bollmark P, Lindgren B and Sassenberg U 1981 Phys. Scr. 24 542 [7] Urban R D, Essig K and Jones H 1993 J. Chem. Phys. 99 1591 [8] Wang X, Souter P F and Andrews L 2003 J. Phys. Chem. A 107 4244 [9] Yu S, Fu D, Shayesteh A, Gordon I E, Appadoo D R T and Bernath P 2005 J. Mol. Spectrosc. 229 257 [10] Beutel M, Setzer K D, Shestakov O and Fink E H 1996 J. Mol. Spectrosc. 179 79 [11] Shestakov O, Gielen R, Pravilov A M, Setzer K D and Fink E H 1998 J. Mol. Spectrosc. 191 199 [12] Alekseyev A B, Liebermann H P, Lingott R M, Bludsky O and Buenker R J 1998 J. Chem. Phys. 108 7695 [13] Liu Y, Ren X Y, Xiao Z Y and Yan B 2021 J. Quant. Spectrosc. Radiat. Transfer 258 107394 [14] Zhang X M, Yan P Y, Li R, Gai Z Q, Liang G Y, Xu H F and Yan B 2016 J. Quant. Spectrosc. Radiat. Transfer 180 154 [15] Xiao Z Y, Ren X Y, Liu Y and Yan B 2021 J. Quant. Spectrosc. Radiat. Transfer 267 107624 [16] Feng S, Shan S M, Guo H J, Xu H F and Yan B 2019 J. Phys. Chem. A 123 3435 [17] Xue J L, Yuan X, Li R, Liu X S, Xu H F and Yan B 2020 Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 241 118679 [18] Ren X Y, Xiao Z Y, Liu Y and Yan B 2021 Chin. Phys. B 30 053101 [19] Liu W and Peng D 2009 J. Chem. Phys. 131 031104 [20] Kutzelnigg W and Liu W 2005 J. Chem. Phys. 123 241102 [21] Liu W and Peng D 2006 J. Chem. Phys. 125 044102 [22] Peng D, Liu W, Xiao Y and Cheng L 2007 J. Chem. Phys. 127 104106 [23] Cheng L 2019 J. Chem. Phys. 151 104103 [24] Saue T, Bast R, Gomes A S P, Jensen H J A, Visscher L, Aucar I A, Remigio R D, Dyall K G, Eliav E, Faßhauer E, Fleig T, Halbert L, Hedegård E D, Helmich-Paris B, Iliaš M, Jacob C R, Knecht S, Laerdahl J K, Vidal M L, Nayak M K, Olejniczak M, Olsen J M H, Pernpointner M, Senjean B, Shee A, Sunaga A and Stralen J N P 2020 J. Chem. Phys. 152 204104 [25] Gomes A S P, Saue T, Visscher L, et al. 2019 DIRAC, a relativistic ab initio electronic structure program, Release DIRAC19 [26] Dyall K G 2002 Theor. Chem. Acc. 108 335 [27] Dyall K G 2006 Theor. Chem. Acc. 115 441 [28] Dyall K G 2016 Theor. Chem. Acc. 135 128 [29] Fleig T, Olsen J and Visscher L 2003 J. Chem. Phys. 119 2963 [30] Fleig T, Jensen H, Olsen J and Visscher L 2006 J. Chem. Phys. 124 104106 [31] Visscher L 2002 J. Compt. Chem. 23 759 [32] Knecht S, Jensen H J Aa and Fleig T 2010 J. Chem. Phys. 132 014108 [33] Peterson K A, Woon D E and Dunning T H 1994 J. Chem. Phys. 100 7410 [34] Peterson K A, Lyons J R and Francisco J S 2006 J. Chem. Phys. 125 084314 [35] Deng D, Lian Y and Zou W 2017 Chem. Phys. Lett. 688 33 [36] Vasilyev V 2017 Comput. Theor. Chem. 1115 1 [37] Yang X, Xu H F and Yan B 2019 Chin. Phys. B 28 013203 [38] Le Roy R J 2017 J. Quant. Spectrosc. Radiat. Transfer 186 167 [39] Bollmark P and Lindgren B 1967 Chem. Phys. Lett. 1 480 [40] Huber K P and Herzberg G 1979 Molecular Spectra and Molecular Structure (New York:Van Nostrand Reinhold Company) p. 572 [41] Balasubramanian K, Tanpipat N and Bloor J E 1987 J. Mol. Spectrosc. 124 458 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|