INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
High-field-induced electron detrapping in An AlGaN/GaN high electron mobility transistor |
Fu Li-Hua (付立华), Lu Hai (陆海), Chen Dun-Jun (陈敦军), Zhang Rongm (张荣), Zheng You-Dou (郑有炓), Wei Ke (魏珂), Liu Xin-Yu (刘新宇) |
a Nanjing National Laboratory of Microstructures, Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; b Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China |
|
|
Abstract A step stress test is carried out to study the reliability characteristics of an AlGaN/GaN high electron mobility transistor (HEMT). An anomalous critical drain-to-gate voltage with a negative temperature coefficient is observed in the stress sequence, beyond which the HEMT device starts to recover from degradation induced by early lower voltage stress. While the performance degradation featuring the drain current slump stems from electron trapping in the surface or bulk states during low-to-medium bias stress, the recovery is attributed to high field induced electron detrapping. The carrier detrapping mechanism could be helpful for lessening the trapping-related performance degradation of a GaN-based HEMT.
|
Received: 02 March 2012
Revised: 11 April 2012
Accepted manuscript online:
|
PACS:
|
85.30.Tv
|
(Field effect devices)
|
|
77.84.Bw
|
(Elements, oxides, nitrides, borides, carbides, chalcogenides, etc.)
|
|
73.61.Ey
|
(III-V semiconductors)
|
|
73.40.Kp
|
(III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
Corresponding Authors:
Lu Hai
E-mail: hailu@nju.edu.cn
|
Cite this article:
Fu Li-Hua (付立华), Lu Hai (陆海), Chen Dun-Jun (陈敦军), Zhang Rongm (张荣), Zheng You-Dou (郑有炓), Wei Ke (魏珂), Liu Xin-Yu (刘新宇) High-field-induced electron detrapping in An AlGaN/GaN high electron mobility transistor 2012 Chin. Phys. B 21 108503
|
[1] |
Wu Y F, Kapolnek D, Ibbetson J P, Parikh P, Keller B P and Mishra U K 2001 IEEE Trans. Electron Dev. 48 586
|
[2] |
Eastman L F, Tilak V, Smart J, Green B M, Chumbes E M, Dimitrov R, Kim H, Ambacher O S, Weimann N, Prunty T, Murphy M, Schaff W J and Shealy J R 2001 IEEE Trans. Electron Dev. 48 479
|
[3] |
Bi Z W, Hu Z H, Mao W, Hao Y, Feng Q, Cao Y R, Gao Z Y, Zhang J C, Ma X H, Chang Y M, Li Z M and Mei N 2011 Chin. Phys. B 20 087307
|
[4] |
Fan L, Hao Y, Zhao Y F, Zhang J C, Gao Z Y and Li P X 2009 Chin. Phys. B 18 2912
|
[5] |
del Alamo J A and Joh J 2009 Microelectron. Reliab. 49 1200
|
[6] |
Meneghesso G, Verzellesi G, Danesin F, Rampazzo F, Zanon F, Tazzoli A, Meneghini M and Zanoni E 2008 IEEE Trans. Dev. Mater. Reliab. 8 332
|
[7] |
Vetury R Q, Zhang N, Keller S K and Mishra U 2001 IEEE Electron Dev. Lett. 48 560
|
[8] |
Meneghesso G, Zanon F, Uren M J and Zanoni E 2009 IEEE Electron Dev. Lett. 30 100
|
[9] |
Wang M J and Chen K J 2011 IEEE Electron Dev. Lett. 32 482
|
[10] |
Fu L H, Lu H, Chen D J, Zhang R, Zheng Y D, Chen T S, Wei K and Liu X Y 2011 Appl. Phys. Lett. 98 173058
|
[11] |
Joh J and del Alamo J A 2008 IEEE Electron Dev. Lett. 29 287
|
[12] |
Ma X H, Jiao Y, Ma P, He Q, Ma J G, Zhang K, Zhang H L, Zhang J C and Hao Y 2011 Chin. Phys. B 20 127305
|
[13] |
Casa M, Dammann M, Polyako V, Waltereit P, Quay R, Mikulla M and Ambache O 2011 Microelectron. Reliab. 51 224
|
[14] |
Ivo P, Glowacki A, Bahat-Treidel E, Lossy R, Würfl J, Boit C and Trakle G 2011 Microelectron. Reliab. 51 217
|
[15] |
Lo C F, Liu L, Kang T S, Davies R, Gila B P, Pearton S J, Kravchenko II, Laboutin O, Cao Y, Johnson W J and Ren F 2011 Electrochem. Solid State Lett. 14 264
|
[16] |
Joh J and del Alamo J A 2011 IEEE Trans. Electron Dev. 58 132
|
[17] |
Meneghesso G, Verzellesi G, Pierobon R, Rampazzo F, Chini A K, Mishra U, Canali C, Member A and Zanoni E 2004 IEEE Trans. Electron Dev. 51 1554
|
[18] |
Dyakonova N, Dickens A, Shura M S, Gaska R and Yang J W 1998 Appl. Phys. Lett. 72 2562
|
[19] |
Mitrofanov O and Manfra M 2004 J. Appl. Phys. 95 6414
|
[20] |
Zanoni E, Danesin F, Meneghini M, Cetronio A, Lanzieri C, Peroni M and Meneghesso G 2009 IEEE Electron Dev. Lett. 30 427
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|