CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Groove-type channel enhancement-mode AlGaN/GaN MIS HEMT with combined polar and nonpolar AlGaN/GaN heterostructures |
Xiao-Ling Duan(段小玲), Jin-Cheng Zhang(张进成), Ming Xiao(肖明), Yi Zhao(赵一), Jing Ning(宁静), Yue Hao(郝跃) |
Key Laboratory of Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China |
|
|
Abstract A novel groove-type channel enhancement-mode AlGaN/GaN MIS high electron mobility transistor (GTCE-HEMT) with a combined polar and nonpolar AlGaN/GaN heterostucture is presented. The device simulation shows a threshold voltage of 1.24 V, peak transconductance of 182 mS/mm, and subthreshold slope of 85 mV/dec, which are obtained by adjusting the device parameters. Interestingly, it is possible to control the threshold voltage accurately without precisely controlling the etching depth in fabrication by adopting this structure. Besides, the breakdown voltage (VB) is significantly increased by 78% in comparison with the value of the conventional MIS-HEMT. Moreover, the fabrication process of the novel device is entirely compatible with that of the conventional depletion-mode (D-mode) polar AlGaN/GaN HEMT. It presents a promising way to realize the switch application and the E/D-mode logic circuits.
|
Received: 26 January 2016
Revised: 31 March 2016
Accepted manuscript online:
|
PACS:
|
73.40.Kp
|
(III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
85.30.De
|
(Semiconductor-device characterization, design, and modeling)
|
|
85.30.Tv
|
(Field effect devices)
|
|
Fund: Project supported by the National Science and Technology Major Project, China (Grant No. 2013ZX02308-002) and the National Natural Science Foundation of China (Grant Nos. 11435010, 61474086, and 61404099). |
Corresponding Authors:
Jin-Cheng Zhang
E-mail: jchzhang@xidian.edu.cn
|
Cite this article:
Xiao-Ling Duan(段小玲), Jin-Cheng Zhang(张进成), Ming Xiao(肖明), Yi Zhao(赵一), Jing Ning(宁静), Yue Hao(郝跃) Groove-type channel enhancement-mode AlGaN/GaN MIS HEMT with combined polar and nonpolar AlGaN/GaN heterostructures 2016 Chin. Phys. B 25 087304
|
[1] |
Khan M A, Kuznia J N, Bhattarai A R and Olson D T 1993 Appl. Phys. Lett. 62 1786
|
[2] |
Wu Y F, Keller B P, Keller S, Kapolnek D, Kozodoy P, DenBaars S P and Mishra U K 1996 Appl. Phys. Lett. 69 1438
|
[3] |
Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Dimitrov R, Wittmer L, Stutzmann M, Rieger W and Hilsenbeck J 1999 J. Appl. Phys. 85 3222
|
[4] |
Hikita M, Yanagihara M, Nakazawa K, Ueno H, Hirose Y, Ueda T, Uemoto Y and Tanaka T 2005 IEEE Trans. Electron Dev. 52 1963
|
[5] |
Cao X A, Cho H, Pearton S J, Dang G T, Zhang A P, Ren F, Shul R J, Zhang L, Hickman R and Van Hove J M 1999 Appl. Phys. Lett. 75 232
|
[6] |
Cai Y, Zhou Y, Lau K M and Chen K J 2006 IEEE Trans. Electron Dev. 53 2207
|
[7] |
Feng Z H, Zhou R, Xie S Y, Yin J Y, Fang J X, Liu B, Zhou W, Chen K J and Cai S J 2010 IEEE Electron Dev. Lett. 31 1386
|
[8] |
Khan M A, Chen Q, Sun C J, Yang J W, Shur M S and Park H 1996 Appl. Phys. Lett. 68 514
|
[9] |
Mi M H, Zhang K, Chen X, Zhao S L, Wang C, Zhang J C, Ma X H and Hao Y 2014 Chin. Phys. B 23 077304
|
[10] |
Kuroda M, Ishida H, Ueda T and Tanaka T 2007 J. Appl. Phys. 102 093703
|
[11] |
Kuroda M, Ueda T and Tanaka T 2010 IEEE Trans. Electron Dev. 57 368
|
[12] |
Fujiwara T, Keller S, Speck J S, DenBaars S P and Mishra U K 2012 Phys. Status Solidi C 9 891
|
[13] |
Fujiwara T, Keller S, Higashiwaki M, Speck J S, DenBaars S P and Mishra U K 2009 Appl. Phys. Express 2 061003
|
[14] |
Fujiwara T, Keller S, Speck J S, DenBaars S P and Mishra U K 2010 Appl. Phys. Express 3 101002
|
[15] |
Fujiwara T, Yeluri R, Denninghoff D, Liu J, Keller S, Speck J S, DenBaars S P and Mishra U K 2011 Appl. Phys. Express 4 096501.
|
[16] |
Wen Y H, He Z Y, Li J L, Luo R H, Xiang P, Deng Q Y, Xu G N, Shen Z, Wu Z S, Zhang B J, Jiang H, Wang G and Liu Y 2011 Appl. Phys. Lett. 98 072108
|
[17] |
Lee J H, Jeong J H and Lee J H 2012 IEEE Electron Dev. Lett. 33 1429
|
[18] |
Wang Y, Wang M J, Xie B, Wen C P, Wang J Y, Hao Y L, Wu W G, Chen K J and Shen B 2013 IEEE Electron Dev. Lett. 34 1370
|
[19] |
Okada M, Saitoh Y, Yokoyama M, Nakata K, Yaegassi S, Katayama K, Ueno M, Kiyama M, Katsuyama T and Nakamura T 2010 Appl. Phys. Express 3 054201
|
[20] |
Nie H, Diduck Q, Alvarez B, Edwards A P, Kayes B M, Zhang M, Ye G F, Prunty T, Bour D and Kizilyalli I C 2014 IEEE Electron Dev. Lett. 35 939
|
[21] |
Oka T, Ueno Y, Ina T and Hasegawa K 2014 Appl. Phys. Express 7 021002
|
[22] |
Zhao S L, Chen W W, Yue T, Wang Y, Luo J, Mao W, Ma X H and Hao Y 2013 Chin. Phys. B 22 117307
|
[23] |
Karmalkar S and Mishra U K 2001 IEEE Trans. Electron Dev. 48 1515
|
[24] |
Farahmand M, Garetto C, Bellotti E, Brennan K F, Goano M, Ghillino E, Ghione G, Albrecht J D and Ruden P P 2001 IEEE Trans. Electron Dev. 48 535
|
[25] |
Fang Z Q, Claflin B, Look D C, Green D S and Vetury R 2010 J. Appl. Phys. 108 063706
|
[26] |
ATLAS Device Simulation Software, Silvaco Int., Santa Clara, CA, USA, 2012
|
[27] |
Takashima S, Li Z D and Chow T P 2013 IEEE Trans. Electron Dev. 60 3025
|
[28] |
Kim D S, Im K S, Kim K W, Kang H S, Kim D K, Chang S J, Bae Y, Hahm S H, Cristoloveanu S and Lee J H 2013 Solid-State Electron. 90 79
|
[29] |
Koblmüller G, Chu R M, Raman A, Mishra U K and Speck J S 2010 J. Appl. Phys. 107 043527
|
[30] |
Yao Y, He Z Y, Yang F, Shen Z, Zhang J C, Ni Y Q, Li J, Wang S, Zhou G L, Zhong J, Wu Z S, Zhang B J, Ao J P and Liu Y 2014 Appl. Phys. Express 7 016502
|
[31] |
Yu E T and Manasreh M O 2002 III-V Nitride Semiconductors Applications and Devices, Vol. 16 (New York:Taylor and Francis Books) pp. 163-168
|
[32] |
F Bernardini, V Fiorentini and D Vanderbilt 1997 Phys. Rev. B 56 R10024
|
[33] |
Yu E T, Sullivan G J, Asbeck P M, Wang C D, Qiao D and Lau S S 1997 Appl. Phys. Lett. 71 2794
|
[34] |
Ambacher O, Foutz B, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Sierakowski A J, Schaff W J, Eastman L F, Dimitrov R, Mitchell A and Stutzmann M 2000 J. Appl. Phys. 87 334
|
[35] |
Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Schaff W J, Eastman L F, Dimitrov R, Wittmer L, Stutzmann M, W Rieger and Hilsenbeck J 1999 J. Appl. Phys. 85 3222
|
[36] |
Keller S, Parish G, Fini P T, Heikman S, Chen C H, Zhang N, DenBaars S P, Mishra U K and Wu Y F 1999 J. Appl. Phys. 86 5850
|
[37] |
Chang C Y, Wang Y L, Gila B P, Gerger A P, Pearton S J, Lo C F, Ren F, Sun Q, Zhang Y and Han J 2009 Appl. Phys. Lett. 95 082110
|
[38] |
Kuraguchi M, Takada Y, Suzuki T, Hirose M, Tsuda K, Saito W, Saito Y and Omura I 2007 Phys. Stat. Sol. A 204 2010
|
[39] |
Jessen G H, Fitch R C, Gillespie J K, Via G, Crespo A, Langley D, Denninghoff D J, Trejo M and Heller E R 2007 IEEE Trans. Electron Dev. 54 2589
|
[40] |
Chow T P and Ghezzo M 1996 "SiC power devices", in III-Nitride, SiC, and Diamond Materials for Electronic Devices, eds. Gaskill D K, Brandt C D and Nemanich R J, Material Research Society Symposium Proceedings, 1996, Pittsburgh, PA, p. 69
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|