Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 017303    DOI: 10.1088/1674-1056/25/1/017303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Reverse blocking characteristics and mechanisms in Schottky-drainAlGaN/GaN HEMT with a drain field plate and floating field plates

Wei Mao(毛维)1, Wei-Bo She(佘伟波)1, Cui Yang(杨翠)2, Jin-Feng Zhang(张金风)1, Xue-Feng Zheng(郑雪峰)1, Chong Wang(王冲)1, Yue Hao(郝跃)1
1. Key Lab of Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China;
2. School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071, China
Abstract  In this paper, a novel AlGaN/GaN HEMT with a Schottky drain and a compound field plate (SD-CFP HEMT) is presented for the purpose of better reverse blocking capability. The compound field plate (CFP) consists of a drain field plate (DFP) and several floating field plates (FFPs). The physical mechanisms of the CFP to improve the reverse breakdown voltage and to modulate the distributions of channel electric field and potential are investigated by two-dimensional numerical simulations with Silvaco-ATLAS. Compared with the HEMT with a Schottky drain (SD HEMT) and the HEMT with a Schottky drain and a DFP (SD-FP HEMT), the superiorities of SD-CFP HEMT lie in the continuous improvement of the reverse breakdown voltage by increasing the number of FFPs and in the same fabrication procedure as the SD-FP HEMT. Two useful optimization laws for the SD-CFP HEMTs are found and extracted from simulation results. The relationship between the number of the FFPs and the reverse breakdown voltage as well as the FP efficiency in SD-CFP HEMTs are discussed. The results in this paper demonstrate a great potential of CFP for enhancing the reverse blocking ability in AlGaN/GaN HEMT and may be of great value and significance in the design and actual manufacture of SD-CFP HEMTs.
Keywords:  AlGaN/GaN HEMT      drain field plate      floating field plate      reverse breakdown voltage  
Received:  19 April 2015      Revised:  10 June 2015      Accepted manuscript online: 
PACS:  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  85.30.Tv (Field effect devices)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61204085, 61334002, 61306017, 61474091, 61574112, and 61574110).
Corresponding Authors:  Wei Mao     E-mail:  mwxidian@126.com

Cite this article: 

Wei Mao(毛维), Wei-Bo She(佘伟波), Cui Yang(杨翠), Jin-Feng Zhang(张金风), Xue-Feng Zheng(郑雪峰), Chong Wang(王冲), Yue Hao(郝跃) Reverse blocking characteristics and mechanisms in Schottky-drainAlGaN/GaN HEMT with a drain field plate and floating field plates 2016 Chin. Phys. B 25 017303

[1] Okamoto Y, Nakayama T, Ando Y, Wakejima A, Matsunaga K, Ota K and Miyamoto H 2007 Electron. Lett. 43 927
[2] Kamiyama M, Ishikawa R and Honjo K 2012 IEEE Microw. Wirel. Compon. Lett. 22 315
[3] Saito W, Nitta T, Kakiuchi Y, Saito Y, Tsuda K, Omura I and Yamaguchi M 2008 IEEE Electron Dev. Lett. 29 8
[4] Mitova R, Ghosh R, Mhaskar U, Klikic D, Wang M X and Dentella A 2014 IEEE Trans. Power Electron. 29 2441
[5] Murari B, Bertotti F and Vignola G A 2002 Smart Power ICs, 2nd edn. (Berlin: Springer-Verlag) pp. 184-188
[6] Leberer R, Reber R and Oppermann M 2008 International Microwave Symposium 85
[7] Morita T, Yanagihara M, Ishida H, Hikita M, Kaibara K, Matsuo H, Uemoto Y, Ueda T, Tanaka T and Ueda D 2007 IEEE International Electron Devices Meeting 865
[8] Nagai S, Yamada Y, Negoro N, Handa H, Kudoh Y, Ueno H, Ishida M, Otuska N and Ueda D 2014 IEEE International Solid-State Circuits Conference 494
[9] Nagai S, Yamada Y, N, Handa H, Negoro N, Hiraiwa M and Ueda D 2015 J. Electron Dev. Soc. 3 7
[10] Bahat-Treidel E, Richard L, Joachim W and Trankle G 2009 IEEE Electron Dev. Lett. 30 901
[11] Zhou C, Chen W, Piner E L and Chen K J 2010 IEEE Electron Dev. Lett. 31 668
[12] Lian Y W, Lin Y S, Lu H C, Huang Y C and Hsu S S H 2012 IEEE Electron Dev. Lett. 33 973
[13] Lee J G, Han S W, Park B R and Cha H Y 2014 Appl. Phys. Express 7 014101
[14] Zhao S L, Mi M H, Hou B, Luo J, Wang Y, Dai Y, Zhang J C, Ma X H and Hao Y 2014 Chin. Phys. B 23 107303
[15] Saito W, Takada Y, Kuragachi M, Tsuda K, Omura I and Ogura T 2003 IEDM Tech. Dig. 23.7.1
[16] Mao W, Yang C, Hao Y, Zhang J C, Liu H X, Bi Z W, Xu S R, Xue J S, Ma X H, Wang C, Yang L A, Zhang J F and Kuang X W 2011 Chin. Phys. B 20 017203
[17] Karmalkar S, Deng J, Shur M S and Gaska R 2001 IEEE Electron Dev. Lett. 22 373
[18] Xing H, Dora Y, Chini A, Heikman S, Keller S and Mishra U K 2004 IEEE Electron Dev. Lett. 25 161
[19] Dora Y, Chakraborty A, McCarthy L, Keller S, DenBaars S P and Mishra U K 2006 IEEE Electron Dev. Lett. 27 713
[20] Zhao S L, Wang Y, Yang X L, Lin Z Y, Wang C, Zhang J C, Ma X H and Hao Y 2014 Chin. Phys. B 23 097305
[21] Karmalkar S and Mishra U K 2001 IEEE Trans. Electron Dev. 48 1515
[22] Kao Y C and Wolley E D 1967 Proc. IEEE 55 1409
[23] Shealy J R, Prunty T R, Chumbes E M and Ridley B K 2003 J. Cryst. Growth 250 7
[24] Kunihiro K, Kasahara K, Takahashi Y and Ohno Y 1999 IEEE Electron Dev Lett. 20 608
[1] High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching
Xinchuang Zhang(张新创), Bin Hou(侯斌), Fuchun Jia(贾富春), Hao Lu(芦浩), Xuerui Niu(牛雪锐), Mei Wu(武玫), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027301.
[2] Fluorine-plasma treated AlGaN/GaN high electronic mobility transistors under off-state overdrive stress
Dongyan Zhao(赵东艳), Yubo Wang(王于波), Yanning Chen(陈燕宁), Jin Shao(邵瑾), Zhen Fu(付振), Fang Liu(刘芳), Yanrong Cao(曹艳荣), Faqiang Zhao(赵法强), Mingchen Zhong(钟明琛), Yasong Zhang(张亚松), Maodan Ma(马毛旦), Hanghang Lv(吕航航), Zhiheng Wang(王志恒), Ling Lv(吕玲), Xuefeng Zheng(郑雪峰), and Xiaohua Ma(马晓华). Chin. Phys. B, 2022, 31(11): 117301.
[3] A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications
Zhihong Chen(陈治宏), Minhan Mi(宓珉瀚), Jielong Liu(刘捷龙), Pengfei Wang(王鹏飞), Yuwei Zhou(周雨威), Meng Zhang(张濛), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(11): 117105.
[4] Impact of oxygen in electrical properties and hot-carrier stress-induced degradation of GaN high electron mobility transistors
Lixiang Chen(陈丽香), Min Ma(马敏), Jiecheng Cao(曹杰程), Jiawei Sun(孙佳惟), Miaoling Que(阙妙玲), and Yunfei Sun(孙云飞). Chin. Phys. B, 2021, 30(10): 108502.
[5] Trap analysis of composite 2D-3D channel in AlGaN/GaN/graded-AlGaN: Si/GaN: C multi-heterostructure at different temperatures
Sheng Hu(胡晟), Ling Yang(杨凌), Min-Han Mi(宓珉瀚), Bin Hou(侯斌), Sheng Liu(刘晟), Meng Zhang(张濛), Mei Wu(武玫), Qing Zhu(朱青), Sheng Wu(武盛), Yang Lu(卢阳), Jie-Jie Zhu(祝杰杰), Xiao-Wei Zhou(周小伟), Ling Lv(吕玲), Xiao-Hua Ma(马晓华), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(8): 087305.
[6] Short-gate AlGaN/GaN high-electron mobility transistors with BGaN buffer
Tie-Cheng Han(韩铁成), Hong-Dong Zhao(赵红东), Xiao-Can Peng(彭晓灿). Chin. Phys. B, 2019, 28(4): 047302.
[7] Theoretical analytic model for RESURF AlGaN/GaN HEMTs
Hao Wu(吴浩), Bao-Xing Duan(段宝兴), Luo-Yun Yang(杨珞云), Yin-Tang Yang(杨银堂). Chin. Phys. B, 2019, 28(2): 027302.
[8] Intrinsic relationship between photoluminescence and electrical characteristics in modulation Fe-doped AlGaN/GaN HEMTs
Jianfei Li(李建飞), Yuanjie Lv(吕元杰), Changfu Li(李长富), Ziwu Ji(冀子武), Zhiyong Pang(庞智勇), Xiangang Xu(徐现刚), Mingsheng Xu(徐明升). Chin. Phys. B, 2017, 26(9): 098504.
[9] Low power fluorine plasma effects on electrical reliability of AlGaN/GaN high electron mobility transistor
Ling Yang(杨凌), Xiao-Wei Zhou(周小伟), Xiao-Hua Ma(马晓华), Ling Lv(吕玲), Yan-Rong Cao(曹艳荣), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2017, 26(1): 017304.
[10] Groove-type channel enhancement-mode AlGaN/GaN MIS HEMT with combined polar and nonpolar AlGaN/GaN heterostructures
Xiao-Ling Duan(段小玲), Jin-Cheng Zhang(张进成), Ming Xiao(肖明), Yi Zhao(赵一), Jing Ning(宁静), Yue Hao(郝跃). Chin. Phys. B, 2016, 25(8): 087304.
[11] Analysis of the modulation mechanisms of the electric field and breakdown performance in AlGaN/GaN HEMT with a T-shaped field-plate
Wei Mao(毛维), Ju-Sheng Fan(范举胜), Ming Du(杜鸣), Jin-Feng Zhang(张金风), Xue-Feng Zheng(郑雪峰), Chong Wang(王冲), Xiao-Hua Ma(马晓华), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2016, 25(12): 127305.
[12] Transient simulation and analysis of current collapse due to trapping effects in AlGaN/GaN high-electron-mobility transistor
Zhou Xing-Ye (周幸叶), Feng Zhi-Hong (冯志红), Wang Yuan-Gang (王元刚), Gu Guo-Dong (顾国栋), Song Xu-Bo (宋旭波), Cai Shu-Jun (蔡树军). Chin. Phys. B, 2015, 24(4): 048503.
[13] Breakdown mechanisms in AlGaN/GaN high electron mobility transistors with different GaN channel thickness values
Ma Xiao-Hua (马晓华), Zhang Ya-Man (张亚嫚), Wang Xin-Hua (王鑫华), Yuan Ting-Ting (袁婷婷), Pang Lei (庞磊), Chen Wei-Wei (陈伟伟), Liu Xin-Yu (刘新宇). Chin. Phys. B, 2015, 24(2): 027101.
[14] Transport mechanism of reverse surface leakage current in AlGaN/GaN high-electron mobility transistor with SiN passivation
Zheng Xue-Feng (郑雪峰), Fan Shuang (范爽), Chen Yong-He (陈永和), Kang Di (康迪), Zhang Jian-Kun (张建坤), Wang Chong (王冲), Mo Jiang-Hui (默江辉), Li Liang (李亮), Ma Xiao-Hua (马晓华), Zhang Jin-Cheng (张进成), Hao Yue (郝跃). Chin. Phys. B, 2015, 24(2): 027302.
[15] AlGaN/GaN high electron mobility transistorwith Al2O3+BCB passivation
Zhang Sheng (张昇), Wei Ke (魏珂), Yu Le (余乐), Liu Guo-Guo (刘果果), Huang Sen (黄森), Wang Xin-Hua (王鑫华), Pang Lei (庞磊), Zheng Ying-Kui (郑英奎), Li Yan-Kui (李艳奎), Ma Xiao-Hua (马晓华), Sun Bing (孙兵), Liu Xin-Yu (刘新宇). Chin. Phys. B, 2015, 24(11): 117307.
No Suggested Reading articles found!