Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(10): 108504    DOI: 10.1088/1674-1056/21/10/108504
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Enhancement of terahertz coupling efficiency by improved antenna design in GaN/AlGaN high electron mobility transistor detectors

Sun Yun-Fei (孙云飞)a b c d, Sun Jan-Dong (孙建东)a c, Zhang Xiao-Yu (张晓渝)a, Qin Hua (秦华)a, Zhang Bao-Shun (张宝顺)a, Wu Dong-Min (吴东岷)a b
a International Laboratory for Adaptive Bio-Nanotechnology (i-Lab), Suzhou Institute of Nano-Technologyand Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China;
b Key Laboratory of Nanodevices, Suzhou Institute of Nano-Technology and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China;
c Graduate University of Chinese Academy of Sciences, Beijing 100190, China
Abstract  An optimized micro-gated terahertz detector with novel triple resonant antenna is presented. The novel resonant antenna operates at room temperature and shows more than a 700% increase in photocurrent response compared to the conventional bowtie antenna. In finite-difference-time-domain simulations, we found the performance of the self-mixing GaN/AlGaN high electron mobility transistor detector is mainly dependent on the parameters Lgs (the gap between the gate and the source/drain antenna) and Lw (the gap between the source and drain antenna). With the improved triple resonant antenna, an optimized micrometer-sized AlGaN/GaN high electron mobility transistor detector can achieve a high responsivity of 9.45×102 V/W at a frequency of 903 GHz at room temperature.
Keywords:  terahertz detector      triple resonant antenna      two-dimensional electron gas      high electron mobility transistor  
Received:  09 February 2012      Revised:  01 March 2012      Accepted manuscript online: 
PACS:  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  72.80.Ey (III-V and II-VI semiconductors)  
  85.35.Be (Quantum well devices (quantum dots, quantum wires, etc.))  
  84.40.Fe (Microwave tubes (e.g., klystrons, magnetrons, traveling-wave, backward-wave tubes, etc.))  
Fund: Project supported by the National Basic Research Program of China (Grant No. G2009CB929303), the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. Y0BAQ31001), the National Natural Science Foundation of China (Grant Nos. 60871077 and 61107093), and the Visiting Professorship for Senior International Scientists of the Chinese Academy of Sciences (Grant No. 2010T2J07).
Corresponding Authors:  Wu Dong-Min     E-mail:  dmwu2008@sinano.ac.cn

Cite this article: 

Sun Yun-Fei (孙云飞), Sun Jan-Dong (孙建东), Zhang Xiao-Yu (张晓渝), Qin Hua (秦华), Zhang Bao-Shun (张宝顺), Wu Dong-Min (吴东岷) Enhancement of terahertz coupling efficiency by improved antenna design in GaN/AlGaN high electron mobility transistor detectors 2012 Chin. Phys. B 21 108504

[1] Nahum M and Martinis John M 1993 Appl. Phys. Lett. 63 3075
[2] Richard P L 1994 J. Appl. Phys. 76 12
[3] Manohara H M, Wong E W, Schlecht E, Hunt B D and Siegel P H 2005 NanoLett. 5 1469
[4] Tarasov M, Svensson J, Weis J, Kuzmin L and Campbell E 2006 JETP Lett. 84 267
[5] Kawano Y, Fuse T, Toyokawa S, Uchida T and Ishibashi K 2008 J. Appl. Phys. 103 034307
[6] Lü J Q and Shur M S 2001 Appl. Phys. Lett. 78 2587
[7] Knap W, Deng Y, Rumyantsev S and Shur M S 2002 Appl. Phys. Lett. 81 4637
[8] Otsuji T, Hanabe M and Ogawara O 2004 Appl. Phys. Lett. 85 2119
[9] Fatimy A El, Teppe F, Dyakonova N, Knap W, Seliuta D, Valušis G, Shchepetov A, Roelens Y, Bollaert S, Cappy A and Rumyantsev S 2006 Appl. Phys. Lett. 89 131926
[10] Ryzhii V, Ryzhii M, Hu Y, Hagiwara I and Shur M S 2007 Appl. Phys. Lett. 90 203503
[11] Ma M R, Chen Y L, Wang L M and Wang C 2008 Chin. Phys. B 17 1854
[12] Teppe F and Knap W 2005 Appl. Phys. Lett. 87 052107
[13] Tauk R, Teppe F, Boubanga S, Coquillat D, Knap W, Meziani Y M, Gallon C, Boeuf F, Skotnicki T, Fenouillet-Beranger C, Maude D K, Rumyantsev S and Shur M S 2006 Appl. Phys. Lett. 89 253511
[14] Fatimy A El, Boubanga Tombet S, Teppe F, Knap W, Veksler D B, Rumyantsev S, Shur M S, Pala N, Gaska R, Fareed Q, Hu X, Seliuta D, Valusis G, Gaquiere C, Theron D and Cappy A 2006 Electron. Lett. 42 1342
[15] Zhou J J, Jiang R L, Sha J, Liu J, Shen B, Zhang R and Zheng Y D 2003 Chin. Phys. 12 785
[16] Shitov S V, Jackson B D, Baryshev A M, Markov A V, Iosad N N, Gao J R and Klapwijk T M 2002 Physica C 372 374
[17] Sundararajan B, Kazuomi E, Tadao T and Yutaka O 2010 Solid-State Electronics 54 1578
[18] Kim S, Jeramy D Z, Paolo F, Gossard A C, Wu D H and Sherwin M S 2008 Appl. Phys. Lett. 92 253508
[19] Tanigawa T, Onishi T, Takigawa S and Otsuji T 2010 Device Research Conference at South Bend, IN, June 22 p. IV.A-9
[20] Sun Y F, Sun J D, Zhou Y, Tan R B, Zeng C H, Xue W, Qin H, Zhang B S and Wu D M 2011 Appl. Phys. Lett. 98 252103
[21] Sun J D, Sun Y F, Wu D M, Cai Y, Qin H and Zhang B S 2012 Appl. Phys. Lett. 100 1013506
[22] Öjefors E, Lisauskas A, Glaab D, Roskos H G and Pfeiffer U R 2009 J. Infrared Milli. Terahz. Waves 30 1269
[1] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
[2] Removal of GaN film over AlGaN with inductively coupled BCl3/Ar atomic layer etch
Jia-Le Tang(唐家乐) and Chao Liu(刘超). Chin. Phys. B, 2022, 31(1): 018101.
[3] Heterogeneous integration of InP HEMTs on quartz wafer using BCB bonding technology
Yan-Fu Wang(王彦富), Bo Wang(王博), Rui-Ze Feng(封瑞泽), Zhi-Hang Tong(童志航), Tong Liu(刘桐), Peng Ding(丁芃), Yong-Bo Su(苏永波), Jing-Tao Zhou(周静涛), Feng Yang(杨枫), Wu-Chang Ding(丁武昌), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018502.
[4] C band microwave damage characteristics of pseudomorphic high electron mobility transistor
Qi-Wei Li(李奇威), Jing Sun(孙静), Fu-Xing Li(李福星), Chang-Chun Chai(柴常春), Jun Ding(丁君), and Jin-Yong Fang(方进勇). Chin. Phys. B, 2021, 30(9): 098502.
[5] Thermodynamic criterion for searching high mobility two-dimensional electron gas at KTaO3 interface
Wen-Xiao Shi(时文潇), Hui Zhang(张慧), Shao-Jin Qi(齐少锦), Jin-E Zhang(张金娥), Hai-Lin Huang(黄海林), Bao-Gen Shen(沈保根), Yuan-Sha Chen(陈沅沙), and Ji-Rong Sun(孙继荣). Chin. Phys. B, 2021, 30(7): 077302.
[6] Effects of notch structures on DC and RF performances of AlGaN/GaN high electron mobility transistors
Hao Zou(邹浩), Lin-An Yang(杨林安), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(4): 040502.
[7] Abnormal phenomenon of source-drain current of AlGaN/GaN heterostructure device under UV/visible light irradiation
Yue-Bo Liu(柳月波), Jun-Yu Shen(沈俊宇), Jie-Ying Xing(邢洁莹), Wan-Qing Yao(姚婉青), Hong-Hui Liu(刘红辉), Ya-Qiong Dai(戴雅琼), Long-Kun Yang(杨隆坤), Feng-Ge Wang(王风格), Yuan Ren(任远), Min-Jie Zhang(张敏杰), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬), and Bai-Jun Zhang(张佰君). Chin. Phys. B, 2021, 30(11): 117302.
[8] High performance InAlN/GaN high electron mobility transistors for low voltage applications
Minhan Mi(宓珉瀚), Meng Zhang(张濛), Sheng Wu(武盛), Ling Yang(杨凌), Bin Hou(侯斌), Yuwei Zhou(周雨威), Lixin Guo(郭立新), Xiaohua Ma(马晓华), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(5): 057307.
[9] Characteristics of AlGaN/GaN high electron mobility transistors on metallic substrate
Minglong Zhao(赵明龙), Xiansheng Tang(唐先胜), Wenxue Huo(霍雯雪), Lili Han(韩丽丽), Zhen Deng(邓震), Yang Jiang(江洋), Wenxin Wang(王文新), Hong Chen(陈弘), Chunhua Du(杜春花), Haiqiang Jia(贾海强). Chin. Phys. B, 2020, 29(4): 048104.
[10] Effect of defects properties on InP-based high electron mobility transistors
Shu-Xiang Sun(孙树祥), Ming-Ming Chang(常明铭), Meng-Ke Li(李梦珂), Liu-Hong Ma(马刘红), Ying-Hui Zhong(钟英辉), Yu-Xiao Li(李玉晓), Peng Ding(丁芃), Zhi Jin(金智), Zhi-Chao Wei(魏志超). Chin. Phys. B, 2019, 28(7): 078501.
[11] The origin of distorted intensity pattern sensed by a lens and antenna coupled AlGaN/GaN-HEMT terahertz detector
Xiang Li(李想), Jian-Dong Sun(孙建东), Hong-Juan Huang(黄宏娟), Zhi-Peng Zhang(张志鹏), Lin Jin(靳琳), Yun-Fei Sun(孙云飞), V V Popov, Hua Qin(秦华). Chin. Phys. B, 2019, 28(11): 118502.
[12] Enhanced spin-dependent thermopower in a double-quantum-dot sandwiched between two-dimensional electron gases
Feng Chi(迟锋), Zhen-Guo Fu(付振国), Liming Liu(刘黎明), Ping Zhang(张平). Chin. Phys. B, 2019, 28(10): 107305.
[13] High-performance InAlGaN/GaN enhancement-mode MOS-HEMTs grown by pulsed metal organic chemical vapor deposition
Ya-Chao Zhang(张雅超), Zhi-Zhe Wang(王之哲), Rui Guo(郭蕊), Ge Liu(刘鸽), Wei-Min Bao(包为民), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2019, 28(1): 018102.
[14] Temperature dependence on the electrical and physical performance of InAs/AlSb heterojunction and high electron mobility transistors
Jing Zhang(张静), Hongliang Lv(吕红亮), Haiqiao Ni(倪海桥), Zhichuan Niu(牛智川), Yuming Zhang(张玉明). Chin. Phys. B, 2018, 27(9): 097201.
[15] Integration of a field-effect-transistor terahertz detector with a diagonal horn antenna
Xiang Li(李想), Jian-dong Sun(孙建东), Zhi-peng Zhang(张志鹏), V V Popov, Hua Qin(秦华). Chin. Phys. B, 2018, 27(6): 068506.
No Suggested Reading articles found!