Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(4): 047302    DOI: 10.1088/1674-1056/28/4/047302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Short-gate AlGaN/GaN high-electron mobility transistors with BGaN buffer

Tie-Cheng Han(韩铁成), Hong-Dong Zhao(赵红东), Xiao-Can Peng(彭晓灿)
School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401, China
Abstract  

Using the semi-insulating property and small lattice constant a of wurtzite BGaN alloy, we propose a BGaN buffer with a B-content of 1% to enhance two-dimensional electron gas (2DEG) confinement in a short-gate AlGaN/GaN high-electron mobility transistor (HEMT). Based on the two-dimensional TCAD simulation, the direct current (DC) and radio frequency (RF) characteristics of the AlGaN/GaN/B0.01Ga0.99N structure HEMTs are theoretically studied. Our results show that the BGaN buffer device achieves good pinch-off quality and improves RF performance compared with GaN buffer device. The BGaN buffer device can allow a good immunity to shift of threshold voltage for the aspect ratio (LG/d) down to 6, which is much lower than that the GaN buffer device with LG/d=11 can reach. Furthermore, due to a similar manner of enhancing 2DEG confinement, the B0.01Ga0.99N buffer device has similar DC and RF characteristics to those the AlGaN buffer device possesses, and its ability to control short-channel effects (SCEs) is comparable to that of an Al0.03Ga0.97N buffer. Therefore, this BGaN buffer with very small B-content promises to be a new method to suppress SCEs in GaN HEMTs.

Keywords:  AlGaN/GaN HEMT      BGaN      back barrier      short-channel effects (SCEs)  
Received:  28 November 2018      Revised:  03 February 2019      Accepted manuscript online: 
PACS:  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  85.30.Tv (Field effect devices)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
Fund: 

Project supported by the Foundation Project of the Science and Technology on Electro-Optical Information Security Control Laboratory, China (Grant No. 614210701041705)

Corresponding Authors:  Hong-Dong Zhao     E-mail:  zhaohd@hebut.edu.cn

Cite this article: 

Tie-Cheng Han(韩铁成), Hong-Dong Zhao(赵红东), Xiao-Can Peng(彭晓灿) Short-gate AlGaN/GaN high-electron mobility transistors with BGaN buffer 2019 Chin. Phys. B 28 047302

[1] Shinohara K, Regan D C, Tang Y, Corrion A L, Brown D F, Wong J C, Robinson J F, Fung H H, Schmitz A, Oh T C, Kim S J, Chen P S, Nagele R G, Margomenos A D and Micovic M 2013 IEEE Trans. Electron Dev. 60 2982
[2] Wang X, Huang S, Zheng Y, Wei K, Chen X, Zhang H and Liu X 2014 IEEE Trans. Electron Dev. 61 1341
[3] Kim D H, Park H, Eom S K, Jeong J S, Cha H Y and Seo K S 2018 IEEE Electron Dev. Lett. 39 995
[4] Jessen G H, Fitch R C, Gillespie J K, Via G, Crespo A, Langley D, Denninghoff D J, Trejo M and Heller E R 2007 IEEE Trans. Electron Dev. 54 2589
[5] Guerra D, Akis R, Marino F A, Ferry D K, Goodnick S M and Saraniti M 2010 IEEE Electron Dev. Lett. 31 1217
[6] Uren M J, Nash K J, Balmer R S, Martin T, Morvan E, Caillas N, Delage S L, Ducatteau D, Grimbert B and De Jaeger J C 2006 IEEE Trans. Electron Dev. 53 395
[7] Palacios T, Chakraborty A, Heikman S, Keller S, DenBaars S P and Mishra U K 2006 IEEE Electron Dev. Lett. 27 13
[8] Han T C, Zhao H D, Yang L and Wang Y 2017 Chin. Phys. B 26 107301
[9] Zhang M, Ma X H, Mi M H, He Y L, Hou B, Zheng J X, Zhu Q, Chen L X, Zhang P and Yang L 2017 Appl. Phys. Lett. 110 193502
[10] Han T C, Zhao H D, Peng X C and Li Y H 2018 Superlattices Microstruct. 116 207
[11] Wang C, Zhao M D, Pei J Q, He Y L, Li X D, Zheng X F, Mao W, Ma X H, Zhang J C and Hao Y 2016 Acta Phys. Sin. 65 038501 (in Chinese)
[12] Ravindran V, Boucherit M, Soltani A, Gautier S, Moudakir T, Dickerson J, Voss P L, di M A, De Jaeger J C and Ougazzaden A 2012 Appl. Phys. Lett. 100 243503
[13] Bishop C, Salvestrini J P, Halfaya Y, Sundaram S, Gmili Y E I, Pradere L, Marteau J Y, Assouar M B, Voss P L and Ougazzaden A 2015 Appl. Phys. Lett. 106 243504
[14] Jurkevicius J, Mickevicius J, Kadys A, Kolenda M and Tamulaitis G 2016 Physica B 492 23
[15] Ougazzaden A, Gautier S, Aggerstam T, Martin J, Bouchaour M, Baghdadli T, Ould Saad S, Lourdudoss S, Maloufi N, Djebbour Z and Jomard F 2007 Quantum Sensing Nanophotonic Devices IV 6475
[16] Baghdadli T, S Ould Saad Hamady, Gautier S, Moudakir T, Benyoucef B and Ougazzaden A 2009 Phys. Status Solidi C 6 S1029
[17] Liu K, Sun H, AlQatari F, Guo W, Liu X, Li J, Castanedo C G T and Li X 2017 Appl. Phys. Lett. 111 222106
[18] Akiyama T, Nakamura K and Ito T 2018 Appl. Phys. Exp. 11 025501
[19] Lee D S, Gao X, Guo S and Palacios T 2011 IEEE Electron Dev. Lett. 32 617
[20] Wang W, Gu G, Dun S and Lv Y 2016 Semicond. Technol. 41 378 (in Chinese)
[21] Ho S Y, Lee C H, Tzou A J, Kou H C, Wu Y R and Huang J J 2017 IEEE Trans. Electron Dev. 64 1505
[22] Gautier S, Sartel C, S Ould Saad Hamady, Maloufi N, Martin J, Jomard F and Ougazzaden A 2006 Superlattices Microstruct. 40 233
[23] Gautier S, Patriarche G, Moudakir T, Abid M, Orsal G, Pantzas K, Troadec D, Soltani A, Largeau L, Mauguin O and Ougazzaden A 2011 J. Crystal Growth 315 288
[24] Malinauskas T, Kadys A, Stanionyte S, Badokas K, Mickevicius J, Jurkevicius J, Dobrovolskas D and Tamulaitis G 2015 Phys. Status Solidi B 252 1
[25] Kadys A, Mickevicius J, Malinauskas T, Jurkevicius J, Kolenda M, Stanionyte S, Dobrovolskas D and Tamulaitis G 2015 J. Phys. D: Appl. Phys. 48 465307
[26] Int. S I L V A C O 2016 ATLAS User's Manual Device Simulation Software (Santa Clara: CA) p. 2
[27] Ambacher O, Majewski J, Miskys C, Link A, Hermann M, Eickhoff M, Stutzmann M, Bernardini F, Fiorentini V, Tilak V, Schaff B and Eastman L F 2002 J. Phys.: Condens. Matter 14 3399
[28] Vitanov S, Palankovski V, Maroldt S and Quay R 2010 Solid-State Electron. 54 1105
[29] Albrecht J D, Wang R P, Ruden P P, Farahm, M and Brennan K F 1998 J. Appl. Phys. 83 4777
[30] Luo J, Zhao S L, Mi M H, Chen W W, Hou B, Zhang J C, Ma X H and Hao Y 2016 Chin. Phys. B 25 027303
[1] High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching
Xinchuang Zhang(张新创), Bin Hou(侯斌), Fuchun Jia(贾富春), Hao Lu(芦浩), Xuerui Niu(牛雪锐), Mei Wu(武玫), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027301.
[2] Fluorine-plasma treated AlGaN/GaN high electronic mobility transistors under off-state overdrive stress
Dongyan Zhao(赵东艳), Yubo Wang(王于波), Yanning Chen(陈燕宁), Jin Shao(邵瑾), Zhen Fu(付振), Fang Liu(刘芳), Yanrong Cao(曹艳荣), Faqiang Zhao(赵法强), Mingchen Zhong(钟明琛), Yasong Zhang(张亚松), Maodan Ma(马毛旦), Hanghang Lv(吕航航), Zhiheng Wang(王志恒), Ling Lv(吕玲), Xuefeng Zheng(郑雪峰), and Xiaohua Ma(马晓华). Chin. Phys. B, 2022, 31(11): 117301.
[3] A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications
Zhihong Chen(陈治宏), Minhan Mi(宓珉瀚), Jielong Liu(刘捷龙), Pengfei Wang(王鹏飞), Yuwei Zhou(周雨威), Meng Zhang(张濛), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(11): 117105.
[4] Impact of oxygen in electrical properties and hot-carrier stress-induced degradation of GaN high electron mobility transistors
Lixiang Chen(陈丽香), Min Ma(马敏), Jiecheng Cao(曹杰程), Jiawei Sun(孙佳惟), Miaoling Que(阙妙玲), and Yunfei Sun(孙云飞). Chin. Phys. B, 2021, 30(10): 108502.
[5] Trap analysis of composite 2D-3D channel in AlGaN/GaN/graded-AlGaN: Si/GaN: C multi-heterostructure at different temperatures
Sheng Hu(胡晟), Ling Yang(杨凌), Min-Han Mi(宓珉瀚), Bin Hou(侯斌), Sheng Liu(刘晟), Meng Zhang(张濛), Mei Wu(武玫), Qing Zhu(朱青), Sheng Wu(武盛), Yang Lu(卢阳), Jie-Jie Zhu(祝杰杰), Xiao-Wei Zhou(周小伟), Ling Lv(吕玲), Xiao-Hua Ma(马晓华), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(8): 087305.
[6] Theoretical analytic model for RESURF AlGaN/GaN HEMTs
Hao Wu(吴浩), Bao-Xing Duan(段宝兴), Luo-Yun Yang(杨珞云), Yin-Tang Yang(杨银堂). Chin. Phys. B, 2019, 28(2): 027302.
[7] Intrinsic relationship between photoluminescence and electrical characteristics in modulation Fe-doped AlGaN/GaN HEMTs
Jianfei Li(李建飞), Yuanjie Lv(吕元杰), Changfu Li(李长富), Ziwu Ji(冀子武), Zhiyong Pang(庞智勇), Xiangang Xu(徐现刚), Mingsheng Xu(徐明升). Chin. Phys. B, 2017, 26(9): 098504.
[8] Simulation study of InAlN/GaN high-electron mobility transistor with AlInN back barrier
Tie-Cheng Han(韩铁成), Hong-Dong Zhao(赵红东), Lei Yang(杨磊), Yang Wang(王杨). Chin. Phys. B, 2017, 26(10): 107301.
[9] Low power fluorine plasma effects on electrical reliability of AlGaN/GaN high electron mobility transistor
Ling Yang(杨凌), Xiao-Wei Zhou(周小伟), Xiao-Hua Ma(马晓华), Ling Lv(吕玲), Yan-Rong Cao(曹艳荣), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2017, 26(1): 017304.
[10] Groove-type channel enhancement-mode AlGaN/GaN MIS HEMT with combined polar and nonpolar AlGaN/GaN heterostructures
Xiao-Ling Duan(段小玲), Jin-Cheng Zhang(张进成), Ming Xiao(肖明), Yi Zhao(赵一), Jing Ning(宁静), Yue Hao(郝跃). Chin. Phys. B, 2016, 25(8): 087304.
[11] Analysis of the modulation mechanisms of the electric field and breakdown performance in AlGaN/GaN HEMT with a T-shaped field-plate
Wei Mao(毛维), Ju-Sheng Fan(范举胜), Ming Du(杜鸣), Jin-Feng Zhang(张金风), Xue-Feng Zheng(郑雪峰), Chong Wang(王冲), Xiao-Hua Ma(马晓华), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2016, 25(12): 127305.
[12] Reverse blocking characteristics and mechanisms in Schottky-drainAlGaN/GaN HEMT with a drain field plate and floating field plates
Wei Mao(毛维), Wei-Bo She(佘伟波), Cui Yang(杨翠), Jin-Feng Zhang(张金风), Xue-Feng Zheng(郑雪峰), Chong Wang(王冲), Yue Hao(郝跃). Chin. Phys. B, 2016, 25(1): 017303.
[13] Transient simulation and analysis of current collapse due to trapping effects in AlGaN/GaN high-electron-mobility transistor
Zhou Xing-Ye (周幸叶), Feng Zhi-Hong (冯志红), Wang Yuan-Gang (王元刚), Gu Guo-Dong (顾国栋), Song Xu-Bo (宋旭波), Cai Shu-Jun (蔡树军). Chin. Phys. B, 2015, 24(4): 048503.
[14] Transport mechanism of reverse surface leakage current in AlGaN/GaN high-electron mobility transistor with SiN passivation
Zheng Xue-Feng (郑雪峰), Fan Shuang (范爽), Chen Yong-He (陈永和), Kang Di (康迪), Zhang Jian-Kun (张建坤), Wang Chong (王冲), Mo Jiang-Hui (默江辉), Li Liang (李亮), Ma Xiao-Hua (马晓华), Zhang Jin-Cheng (张进成), Hao Yue (郝跃). Chin. Phys. B, 2015, 24(2): 027302.
[15] Breakdown mechanisms in AlGaN/GaN high electron mobility transistors with different GaN channel thickness values
Ma Xiao-Hua (马晓华), Zhang Ya-Man (张亚嫚), Wang Xin-Hua (王鑫华), Yuan Ting-Ting (袁婷婷), Pang Lei (庞磊), Chen Wei-Wei (陈伟伟), Liu Xin-Yu (刘新宇). Chin. Phys. B, 2015, 24(2): 027101.
No Suggested Reading articles found!