CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Short-gate AlGaN/GaN high-electron mobility transistors with BGaN buffer |
Tie-Cheng Han(韩铁成), Hong-Dong Zhao(赵红东), Xiao-Can Peng(彭晓灿) |
School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401, China |
|
|
Abstract Using the semi-insulating property and small lattice constant a of wurtzite BGaN alloy, we propose a BGaN buffer with a B-content of 1% to enhance two-dimensional electron gas (2DEG) confinement in a short-gate AlGaN/GaN high-electron mobility transistor (HEMT). Based on the two-dimensional TCAD simulation, the direct current (DC) and radio frequency (RF) characteristics of the AlGaN/GaN/B0.01Ga0.99N structure HEMTs are theoretically studied. Our results show that the BGaN buffer device achieves good pinch-off quality and improves RF performance compared with GaN buffer device. The BGaN buffer device can allow a good immunity to shift of threshold voltage for the aspect ratio (LG/d) down to 6, which is much lower than that the GaN buffer device with LG/d=11 can reach. Furthermore, due to a similar manner of enhancing 2DEG confinement, the B0.01Ga0.99N buffer device has similar DC and RF characteristics to those the AlGaN buffer device possesses, and its ability to control short-channel effects (SCEs) is comparable to that of an Al0.03Ga0.97N buffer. Therefore, this BGaN buffer with very small B-content promises to be a new method to suppress SCEs in GaN HEMTs.
|
Received: 28 November 2018
Revised: 03 February 2019
Accepted manuscript online:
|
PACS:
|
73.40.Kp
|
(III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
85.30.Tv
|
(Field effect devices)
|
|
85.30.De
|
(Semiconductor-device characterization, design, and modeling)
|
|
Fund: Project supported by the Foundation Project of the Science and Technology on Electro-Optical Information Security Control Laboratory, China (Grant No. 614210701041705) |
Corresponding Authors:
Hong-Dong Zhao
E-mail: zhaohd@hebut.edu.cn
|
Cite this article:
Tie-Cheng Han(韩铁成), Hong-Dong Zhao(赵红东), Xiao-Can Peng(彭晓灿) Short-gate AlGaN/GaN high-electron mobility transistors with BGaN buffer 2019 Chin. Phys. B 28 047302
|
[1] |
Shinohara K, Regan D C, Tang Y, Corrion A L, Brown D F, Wong J C, Robinson J F, Fung H H, Schmitz A, Oh T C, Kim S J, Chen P S, Nagele R G, Margomenos A D and Micovic M 2013 IEEE Trans. Electron Dev. 60 2982
|
[2] |
Wang X, Huang S, Zheng Y, Wei K, Chen X, Zhang H and Liu X 2014 IEEE Trans. Electron Dev. 61 1341
|
[3] |
Kim D H, Park H, Eom S K, Jeong J S, Cha H Y and Seo K S 2018 IEEE Electron Dev. Lett. 39 995
|
[4] |
Jessen G H, Fitch R C, Gillespie J K, Via G, Crespo A, Langley D, Denninghoff D J, Trejo M and Heller E R 2007 IEEE Trans. Electron Dev. 54 2589
|
[5] |
Guerra D, Akis R, Marino F A, Ferry D K, Goodnick S M and Saraniti M 2010 IEEE Electron Dev. Lett. 31 1217
|
[6] |
Uren M J, Nash K J, Balmer R S, Martin T, Morvan E, Caillas N, Delage S L, Ducatteau D, Grimbert B and De Jaeger J C 2006 IEEE Trans. Electron Dev. 53 395
|
[7] |
Palacios T, Chakraborty A, Heikman S, Keller S, DenBaars S P and Mishra U K 2006 IEEE Electron Dev. Lett. 27 13
|
[8] |
Han T C, Zhao H D, Yang L and Wang Y 2017 Chin. Phys. B 26 107301
|
[9] |
Zhang M, Ma X H, Mi M H, He Y L, Hou B, Zheng J X, Zhu Q, Chen L X, Zhang P and Yang L 2017 Appl. Phys. Lett. 110 193502
|
[10] |
Han T C, Zhao H D, Peng X C and Li Y H 2018 Superlattices Microstruct. 116 207
|
[11] |
Wang C, Zhao M D, Pei J Q, He Y L, Li X D, Zheng X F, Mao W, Ma X H, Zhang J C and Hao Y 2016 Acta Phys. Sin. 65 038501 (in Chinese)
|
[12] |
Ravindran V, Boucherit M, Soltani A, Gautier S, Moudakir T, Dickerson J, Voss P L, di M A, De Jaeger J C and Ougazzaden A 2012 Appl. Phys. Lett. 100 243503
|
[13] |
Bishop C, Salvestrini J P, Halfaya Y, Sundaram S, Gmili Y E I, Pradere L, Marteau J Y, Assouar M B, Voss P L and Ougazzaden A 2015 Appl. Phys. Lett. 106 243504
|
[14] |
Jurkevicius J, Mickevicius J, Kadys A, Kolenda M and Tamulaitis G 2016 Physica B 492 23
|
[15] |
Ougazzaden A, Gautier S, Aggerstam T, Martin J, Bouchaour M, Baghdadli T, Ould Saad S, Lourdudoss S, Maloufi N, Djebbour Z and Jomard F 2007 Quantum Sensing Nanophotonic Devices IV 6475
|
[16] |
Baghdadli T, S Ould Saad Hamady, Gautier S, Moudakir T, Benyoucef B and Ougazzaden A 2009 Phys. Status Solidi C 6 S1029
|
[17] |
Liu K, Sun H, AlQatari F, Guo W, Liu X, Li J, Castanedo C G T and Li X 2017 Appl. Phys. Lett. 111 222106
|
[18] |
Akiyama T, Nakamura K and Ito T 2018 Appl. Phys. Exp. 11 025501
|
[19] |
Lee D S, Gao X, Guo S and Palacios T 2011 IEEE Electron Dev. Lett. 32 617
|
[20] |
Wang W, Gu G, Dun S and Lv Y 2016 Semicond. Technol. 41 378 (in Chinese)
|
[21] |
Ho S Y, Lee C H, Tzou A J, Kou H C, Wu Y R and Huang J J 2017 IEEE Trans. Electron Dev. 64 1505
|
[22] |
Gautier S, Sartel C, S Ould Saad Hamady, Maloufi N, Martin J, Jomard F and Ougazzaden A 2006 Superlattices Microstruct. 40 233
|
[23] |
Gautier S, Patriarche G, Moudakir T, Abid M, Orsal G, Pantzas K, Troadec D, Soltani A, Largeau L, Mauguin O and Ougazzaden A 2011 J. Crystal Growth 315 288
|
[24] |
Malinauskas T, Kadys A, Stanionyte S, Badokas K, Mickevicius J, Jurkevicius J, Dobrovolskas D and Tamulaitis G 2015 Phys. Status Solidi B 252 1
|
[25] |
Kadys A, Mickevicius J, Malinauskas T, Jurkevicius J, Kolenda M, Stanionyte S, Dobrovolskas D and Tamulaitis G 2015 J. Phys. D: Appl. Phys. 48 465307
|
[26] |
Int. S I L V A C O 2016 ATLAS User's Manual Device Simulation Software (Santa Clara: CA) p. 2
|
[27] |
Ambacher O, Majewski J, Miskys C, Link A, Hermann M, Eickhoff M, Stutzmann M, Bernardini F, Fiorentini V, Tilak V, Schaff B and Eastman L F 2002 J. Phys.: Condens. Matter 14 3399
|
[28] |
Vitanov S, Palankovski V, Maroldt S and Quay R 2010 Solid-State Electron. 54 1105
|
[29] |
Albrecht J D, Wang R P, Ruden P P, Farahm, M and Brennan K F 1998 J. Appl. Phys. 83 4777
|
[30] |
Luo J, Zhao S L, Mi M H, Chen W W, Hou B, Zhang J C, Ma X H and Hao Y 2016 Chin. Phys. B 25 027303
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|