Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(8): 084203    DOI: 10.1088/1674-1056/21/8/084203
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Propagation properties of stochastic electromagnetic double-vortex beams in turbulent atmosphere

Fang Gui-Juan (方桂娟)a b, Pu Ji-Xiong (蒲继雄)b
a College of Physics and Electromechanical Engineering, Sanming University, Sanming 365004, China;
b College of Information Science & Engineering, Huaqiao University, Xiamen 361021, China
Abstract  Based on the extended Huygens-Fresnel principle, we study the propagation properties of stochastic electromagnetic double-vortex beams in turbulent atmosphere. The result shows that the spreading of the partially coherent double-vortex beams can be smaller than that of the fully coherent ones. The degree of polarization of this kind of beam will experience change, which is dependent on the degree of polarization of the source plane, the atmospheric turbulence, topological charge, and the spatial coherence. The results may have applications in space optical communication.
Keywords:  double-vortex beams      coherent      polarization      turbulent atmosphere  
Received:  31 December 2011      Revised:  20 January 2012      Accepted manuscript online: 
PACS:  42.25.Ja (Polarization)  
  42.25.Kb (Coherence)  
  42.60.Jf (Beam characteristics: profile, intensity, and power; spatial pattern formation)  
  92.60.Ta (Electromagnetic wave propagation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60977068 and 61178015) and the Natural Science Foundation of Sanming University, China (Grant No. B201103/G).
Corresponding Authors:  Pu Ji-Xiong     E-mail:  jixiong@hqu.edu.cn

Cite this article: 

Fang Gui-Juan (方桂娟), Pu Ji-Xiong (蒲继雄) Propagation properties of stochastic electromagnetic double-vortex beams in turbulent atmosphere 2012 Chin. Phys. B 21 084203

[1] Gbur G and Wolf E 2002 J. Opt. Soc. Am. A 19 1592
[2] Dogariu A and Amarande S 2003 Opt. Lett. 28 10
[3] Shirai T, Dogariu A and Wolf E 2003 J. Opt. Soc. Am. A 20 1094
[4] Cai Y and He S 2006 Appl. Phys. Lett. 89 11171
[5] Gbur G and Korotkova O 2007 J. Opt. Soc. Am. A 24 745
[6] Chen B and Pu J 2009 Chin. Phys. B 18 1033
[7] Pu J, Wang T, Lin H and Li C 2010 Chin. Phys. B 19 089201
[8] Wang H, Liu D, Zhou Z, Tong S and Song Y 2011 Optics and Lasers in Engineering 49 1238
[9] Ding P and Pu J 2011 Acta Phys. Sin. 60 094204 (in Chinese)
[10] Shirai T 2005 Opt. Commun. 256 197
[11] Wolf E 2003 Phys. Lett. A 312 263
[12] Korotkova O and Wolf E 2005 Opt. Commun. 246 35
[13] Roychowdhury H, Ponomarenko S A and Wolf E 2005 J. Mod. Opt. 52 1611
[14] Korotkova O, Salem M and Wolf E 2004 Opt. Commun. 233 225
[15] Zhong Y, Cui Z, Shi J and Qu J 2011 Appl. Phys. B 102 937
[16] Eyyuboğlu H T, Baykal Y and Cai Y 2007 Appl. Phys. B 89 91
[17] Ji X, Zhang E and Lü B 2007 Opt. Commun. 275 292
[18] Wang T, Pu J and Chen Z 2008 Opt. Eng. 47 036002
[19] Du X and Zhao D 2008 J. Opt. Soc. Am. A 25 773
[20] Yura H T 1972 Appl. Opt. 11 1399
[21] Gradysteyn I S and Ryzhik I M 2000 Table of Integrals, Series and Products (New York: Academic)
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Performance analysis of quantum key distribution using polarized coherent-states in free-space channel
Zengte Zheng(郑增特), Ziyang Chen(陈子扬), Luyu Huang(黄露雨),Xiangyu Wang(王翔宇), and Song Yu(喻松). Chin. Phys. B, 2023, 32(3): 030306.
[4] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[5] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[6] Atomic optical spatial mode extractor for vector beams based on polarization-dependent absorption
Hong Chang(常虹), Xin Yang(杨欣), Jinwen Wang(王金文), Yan Ma(马燕), Xinqi Yang(杨鑫琪), Mingtao Cao(曹明涛), Xiaofei Zhang(张晓斐), Hong Gao(高宏), Ruifang Dong(董瑞芳), and Shougang Zhang(张首刚). Chin. Phys. B, 2023, 32(3): 034207.
[7] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[8] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
[9] A band-pass frequency selective surface with polarization rotation
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Jian-Xin Guo(郭建新), Zhe Liu(刘哲), Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2023, 32(2): 024204.
[10] Tightly focused properties of a partially coherent radially polarized power-exponent-phase vortex beam
Kang Chen(陈康), Zhi-Yuan Ma(马志远), and You-You Hu(胡友友). Chin. Phys. B, 2023, 32(2): 024208.
[11] A simulation study of polarization characteristics of ultrathin CsPbBr3 nanowires with different cross-section shapes and sizes
Kang Yang(杨康), Huiqing Hu(胡回清), Jiaojiao Wang(王娇娇), Lingling Deng(邓玲玲), Yunqing Lu(陆云清), and Jin Wang(王瑾). Chin. Phys. B, 2023, 32(2): 024214.
[12] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[13] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[14] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[15] Evolution of polarization singularities accompanied by avoided crossing in plasmonic system
Yi-Xiao Peng(彭一啸), Qian-Ju Song(宋前举), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and De-Zhuan Han(韩德专). Chin. Phys. B, 2023, 32(1): 014201.
No Suggested Reading articles found!