Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(8): 084204    DOI: 10.1088/1674-1056/21/8/084204
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Wigner function and the entanglement of quantized Bessel–Gaussian vortex state of quantized radiation field

Zhu Kai-Cheng (朱开成), Li Shao-Xin (李绍新), Tang Ying (唐英), Zheng Xiao-Juan (郑小娟), Tang Hui-Qin (唐慧琴 )
a School of Physical Science and Technology, Central South University, Changsha 410083, China;
b Physical Staff Room, Guangdong Medical College, Dongguan 523808, China
Abstract  A new kind of quantum non-Gaussian state with vortex structure, termed Bessel-Gaussian vortex state, is constructed, which is an eigenstate of sum of squared annihilation operators a2 + b2. The Wigner function of the quantum vortex state is derived and exhibits negativity which is an indication of nonclassicality. It is also found that quantized vortex state is always in entanglement. And a scheme for generating such quantized vortex states is proposed.
Keywords:  Wigner distribution function      quantized vortex state      quantum non-Gaussian state  
Received:  05 December 2011      Revised:  15 February 2012      Accepted manuscript online: 
PACS:  42.50.-p (Quantum optics)  
  03.65.-w (Quantum mechanics)  
Corresponding Authors:  Zhu Kai-Cheng     E-mail:  kczhu058@mail.csu.edu.cn, zhukaicheng@vip.sina.com

Cite this article: 

Zhu Kai-Cheng (朱开成), Li Shao-Xin (李绍新), Tang Ying (唐英), Zheng Xiao-Juan (郑小娟), Tang Hui-Qin (唐慧琴 ) Wigner function and the entanglement of quantized Bessel–Gaussian vortex state of quantized radiation field 2012 Chin. Phys. B 21 084204

[1] Braunstein S L and Pati A K 2003 Quantum Information with Continuous Variables (Dordrecht: Kluwer Academic)
[2] Braunstein S L and von Loock P 2005 Rev. Mod. Phys. 77 513
[3] Eisert J, Scheel S and Plenio M B 2002 Phys. Rev. Lett. 89 137903
[4] Fiurasek J 2002 Phys. Rev. Lett. 89 137904
[5] Giedke G and Cirac J I 2002 Phys. Rev. A 66 032316
[6] Bhaumik D, Bhaumik K and Dutta-Roy B 1976 J. Phys. A: Math. Gen. 9 1507
[7] Agarwal G S 1986 Phys. Rev. Lett. 57 827
[8] Agarwal G S 1988 J. Opt. Soc. Am. B 5 1940
[9] Prakash G S and Agarwal G S 1995 Phys. Rev. A 52 2335
[10] Gou S C, Steinbach J and Knight P L 1996 Phys. Rev. A 54 R1014
[11] Gilchrist A and Munro W J 2000 J. Opt. B: Quantum Semiclass. Opt. 2 47
[12] Meng X G, Wang J S and Fan H Y 2007 Phys. Lett. A 363 12
[13] Meng X G, Wang J S, Liang B L and Li H Q 2008 Chin. Phys. B 17 1791
[14] Gerry C C and Mimih J 2010 Phys. Rev. A 82 013831
[15] Gabris A and Agarwal G S 2007 Int. J. Quantum Infor. 5 17
[16] Gerry C C, Mimih J and Birrittella R 2011 Phys. Rev. A 84 023810
[17] Agarwal G S, Puri R R and Singh R P 1997 Phys. Rev. A 56 4207
[18] Agarwal G S and Banerji J 2006 J. Phys. A: Math. Gen. 39 11503
[19] Bandyopadhyay A and Singh R P 2011 Opt. Commun. 284 256
[20] Bandyopadhyay A, Prabhakar S and Singh R P 2011 Phys. Lett. A 375 1926
[21] Agarwal G S and Biswas A 2005 New J. Phys. 7 211
[22] Agarwal G S 2011 New J. Phys. 13 073008
[23] Molina-Terriza G, Torres J P and Torner L 2001 Phys. Rev. Lett. 88 013601
[24] Leach J, Padgett M J, Barnett S M, Franke-Arnold S and Courtial J 2002 Phys. Rev. Lett. 88 257901
[25] Allen L, Barnett S M and Padgett M J 2003 Optical Angular Momentum (Bristol: Institute of Physics)
[26] Louisell W H, Yariv A and Semjonov A E 1961 Phys. Rev. 124 1646
[27] Tucker J and Walls D F 1969 Ann. Phys. NY 52 1
[28] Dodonov A V, Dodonov V V and Mizrahi S S 2005 J. Phys. A: Math. Gen. 38 683
[29] Abramowitz M and Stegun I A 1965 Handbook of Mathematical Functions (New York: Dover)
[1] Nonclassicality of photon-modulated spin coherent states in the Holstein—Primakoff realization
Xiaoyan Zhang(张晓燕), Jisuo Wang(王继锁), Lei Wang(王磊),Xiangguo Meng(孟祥国), and Baolong Liang(梁宝龙). Chin. Phys. B, 2022, 31(5): 054205.
[2] Interaction of pair coherent state with a three-level Λ-type atom and generation of a modified Bessel-Gaussian state with a vortex structure
Tang Hui-Qin (唐慧琴), Li Shao-Xin (李绍新), Tang Ying (唐英), Zheng Xiao-Juan (郑小娟), Zhu Kai-Cheng (朱开成). Chin. Phys. B, 2013, 22(2): 020310.
[3] The Wigner distribution function of a super Lorentz–Gauss SLG11 beam through a paraxial ABCD optical system
Zhou Yi-Min (周益民), Zhou Guo-Quan (周国泉). Chin. Phys. B, 2013, 22(10): 104201.
[4] Decoherence of elliptical states in phase space
Wang Yue-Yuan (王月媛), Liu Zheng-Jun (刘正君), Liao Qing-Hong (廖庆洪), Wang Ji-Cheng (王继成), Liu Shu-Tian (刘树田). Chin. Phys. B, 2011, 20(5): 054201.
[5] A new finite-dimensional thermal coherent state and its Wigner distribution function
Meng Xiang-Guo(孟祥国), Wang Ji-Suo(王继锁), and Liang Bao-Long(梁宝龙) . Chin. Phys. B, 2011, 20(1): 014204.
[6] Relations between chirp transform and Fresnel diffraction, Wigner distribution function and a fast algorithm for chirp transform
Shi Peng(石鹏) , Cao Guo-Wei(曹国威), and Li Yong-Ping(李永平). Chin. Phys. B, 2010, 19(7): 074201.
[7] The Wigner function and phase properties of superposition of two coherent states with the vacuum state
Wang Yue-Yuan (王月媛), Wang Ji-Cheng (王继成), Liu Shu-Tian (刘树田). Chin. Phys. B, 2010, 19(7): 074206.
[8] Fractional Fourier transform of flat-topped multi-Gaussian beams based on the Wigner distribution function
Wu Ping (吴平), Lü Bai-Da (吕百达), Chen Tian-Lu (陈天禄). Chin. Phys. B, 2005, 14(6): 1130-1135.
No Suggested Reading articles found!