Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(8): 087301    DOI: 10.1088/1674-1056/21/8/087301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Oxygen vacancy in N-doped Cu2O crystals: A density functional theory study

Li Min (李敏)a, Zhang Jun-Ying (张俊英)a, Zhang Yue (张跃)b, Wang Tian-min (王天民)a
a Key Laboratory of Micro-Nano Measurement, Manipulation and Physics (Ministry of Education), Department of Physics, Beihang University, Beijing 100191, China;
b School of Materials Science and Engineering, Beihang University, Beijing 100191, China
Abstract  The N-doping effects on the electronic properties of Cu2O crystals are investigated using density functional theory. The calculated results show that N-doped Cu2O with or without oxygen vacancy exhibits different modifications of electronic band structure. In N anion-doped Cu2O, some N 2p states overlap and mix with the O 2p valence band, leading to a slight narrowing of band gap compared with the undoped Cu2O. However, it is found that the coexistence of both N impurity and oxygen vacancy contributes to band gap widening which may account for the experimentally observed optical band gap widening by N doping.
Keywords:  oxygen vacancy      nitrogen      Cu2O      first-principles  
Received:  03 December 2011      Revised:  11 January 2012      Accepted manuscript online: 
PACS:  73.20.At (Surface states, band structure, electron density of states)  
  73.20.-r (Electron states at surfaces and interfaces)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National High Technology Research and Development Program of China (Grant No. 2009AA03 Z428), the National Natural Science Foundation of China (Grant No. 50872005), and the Innovation Foundation of BUAA for Ph. D. Graduates and the Fundamental Research Funds for the Central Universities (Grant No. YWF-12-LKGY-005).
Corresponding Authors:  Zhang Jun-Ying     E-mail:  zjy@buaa.edu.cn

Cite this article: 

Li Min (李敏), Zhang Jun-Ying (张俊英), Zhang Yue (张跃), Wang Tian-min (王天民) Oxygen vacancy in N-doped Cu2O crystals: A density functional theory study 2012 Chin. Phys. B 21 087301

[1] Grondahl L O 1933 Rev. Mod. Phys. 5 141
[2] Porat O and Riess I 1995 Solid State Ionics 81 529
[3] Nolan M and Elliott S D 2006 Phys. Chem. Chem. Phys. 8 5350
[4] Poizot P, Laruelle S, Grugeon S, Dupront L and Taracon J M 2000 Nature 407 496
[5] Briskman R N 1992 Sol. Energy Mater. Sol. Cells 27 361
[6] Zhang J T, Liu J F, Peng Q, Wang X and Li Y D 2006 Chem. Mater. 18 867
[7] Rai B P 1988 Solar Cells: A Review. Sol. Cells 25 265
[8] Ishizuka S, Kato S, Okamoto Y and Akimoto K 2002 Appl. Phys. Lett. 80 950
[9] Nolan M and Elliott S D 2006 Phys. Chem. Chem. Phys. 8 5350
[10] Chen J, Jin G J and Ma Y Q 2009 Acta Phys. Sin. 58 2702 (in Chinese)
[11] Zhang X J, Gao P and Liu Q J 2010 Acta Phys. Sin. 59 4930 (in Chinese)
[12] Asahi R, Morikawa T, Ohwaki T, Aoki K and Taga Y 2001 Science 293 269
[13] Nakano Y, Morikawa T, Ohwaki T and Taga Y 2005 Appl. Phys. Lett. 87 232104
[14] Tsukazaki A, Ohtomo A, Onuma T, Ohtani M, Makino T, Sumiya M, Ohtani K, Chichibu S F, Fuke S, Segawa Y, Ohno H, Koinuma H and Kawasaki M 2005 Nature Mater. 4 42
[15] Wei Y, Hu H F, Wang Z Y, Cheng C P, Chen N T and Xie N 2011 Acta Phys. Sin. 60 027307 (in Chinese)
[16] Akimoto K, Ishizuka S, Yanagita M, Nawa Y, Paul G K and Saku-rai T 2006 Sol. Energy 80 715
[17] Ishizuka S, Kato S, Okamoto Y, Sakurai T and Akimoto K 2002 J. Cryst. Growth 237 616
[18] Ishizuka S, Kato S, Murayama T and Akimoto K 2001 Jpn. J. Appl. Phys. 40 2765
[19] Nakano Y, Saeki S and Morikawa T 2009 Appl. Phys. Lett. 94 022111
[20] Wickoff W G 1960 Crystal Structures Vol. 1 (New York: Wiley-Interscience)
[21] Werner A and Hocheimer H D 1982 Phys. Rev. B 25 5929
[22] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[23] Perdew J P, Burke K and Ernzerhof M 1997 Phys. Rev. Lett. 78 1396
[24] Perdew J P, Ruzsinszky A, Tao J, Staroverov V N, Scuseria G E and Csonka G I 2005 J. Chem. Phys. 123 62201
[25] Perdew J P, Burke K and Wang Y 1996 Phys. Rev. B 54 16533
[26] Milman V, Winkler B, White J A, Pickard C J and Payne M C 2000 Int. J. Quantum Chem. 77 895
[27] Long R and English N J 2009 Appl. Phys. Lett. 94 132102
[28] Ma X G, Wu Y, Lu Y H, Xu J, Wang Y J and Zhu Y F 2011 J. Phys. Chem. C 115 16963
[29] Wang P, Liu Z R, Lin F, Zhou G, Wu J, Duan W H, Gu B L and Zhang S B 2010 Phys. Rev. B 82 193103
[30] Baumeister P W 1961 Phys. Rev. 121 359
[31] Ghijsen J, Tjeng L H, van Elp J, Eskes H, Westerink J, Sawatsky G A and Czyzyk M T 1988 Phys. Rev. B 38 11322
[32] Ghijsen J, Tjeng L H, Eskes H, Sawatsky G A and Johnson R L 1990 Phys. Rev. B 42 2268
[33] Soon A, Todorova M, Delley B and Stampfl C 2007 Phys. Rev. B 75 125420
[34] Mart'inez-Ruiz A, Moreno M G and Takeuchi N 2003 Solid State Sci. 5 291
[35] Ching W Y, Xu Y N and Wong K W 1989 Phys. Rev. B 40 7684
[36] Soon A, Todorova M, Delley B and Stampfl C 2006 Phys. Rev. B 73 165424
[37] DiValentin C, Pacchioni G, Selloni A, Livraghi S and Giamello E 2005 J. Phys. Chem. B 109 11414
[38] Lee J, Park J and Cho J 2005 Appl. Phys. Lett. 87 011904
[39] Soon A, Sohnel T and Idriss H 2005 Surf. Sci. 579 131
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[4] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[5] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[6] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] Energy levels and magnetic dipole transition parameters for the nitrogen isoelectronic sequence
Mu-Hong Hu(胡木宏), Nan Wang(王楠), Pin-Jun Ouyang(欧阳品均),Xin-Jie Feng(冯新杰), Yang Yang(杨扬), and Chen-Sheng Wu(武晨晟). Chin. Phys. B, 2022, 31(9): 093101.
[9] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[10] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[11] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[12] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[13] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[14] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[15] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
No Suggested Reading articles found!