Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(7): 073401    DOI: 10.1088/1674-1056/21/7/073401
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Isotope effect on the stereodynamics for the collision reaction H+LiF(v = 0, j = 0)→ HF+Li

Yue Xian-Fang (岳现房 )
Department of Physics and Information Engineering, Jining University, Qufu 273155, China
Abstract  Stereodynamics for the reaction H+LiF(v = 0, j = 0)!HF+Li and its isotopic variants on the ground-state (1XXA′) potential energy surface (PES) are studied by employing the quasi-classical trajectory (QCT) method. At a collision energy of 1.0 eV, product rotational angular momentum distributions P(θr), P(?r), and P(θr, ?r), are calculated in the center-of-mass (CM) frame. The results demonstrate that the product rotational angular momentum j′ is not only aligned along the direction perpendicular to the reagent relative velocity vector k, but also oriented along the negative y axis. The four generalized polarization-dependent differential cross sections (PDDCSs) are also computed. The PDDCS00 distribution shows a preferential forward scattering for the product angular distribution in each of the three isotopic reactions, which indicates that the title collision reaction is a direct reaction mechanism. Isotope effect on the stereodynamics is revealed and discussed in detail.
Keywords:  stereodynamics      quasi-classical trajectory      isotope effect      polarization-dependent differential cross-section  
Received:  20 November 2011      Revised:  04 February 2012      Accepted manuscript online: 
PACS:  34.50.Lf (Chemical reactions)  
  82.20.Fd (Collision theories; trajectory models)  
  82.20.Hf (Product distribution)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 21003062).
Corresponding Authors:  Yue Xian-Fang     E-mail:  xfyuejnu@gmail.com

Cite this article: 

Yue Xian-Fang (岳现房 ) Isotope effect on the stereodynamics for the collision reaction H+LiF(v = 0, j = 0)→ HF+Li 2012 Chin. Phys. B 21 073401

[1] Mcclelland G M and Herschbach D R 1979 J. Phys. Chem. A 83 1445
[2] Jonah C D, Zare R N and Ottinger C 1972 J. Chem. Phys. 56 263
[3] Greene C H and Zare R N 1983 J. Chem. Phys. 78 6741
[4] Han K L, He G Z and Lou N Q 1993 Chem. Phys. Lett. 203 509
[5] Yan S, Wu Y T, Zhang B, Yue X F and Liu K 2007 Science 316 1723
[6] de Miranda M P and Clary D C 1997 J. Chem. Phys. 106 4509
[7] Han K L, He G Z and Lou N Q 1996J. Chem. Phys. 105 8699
[8] Wang M L, Han K L and He G Z 1998 J. Chem. Phys. 109 5446
[9] Chen M D, Han K L and Lou N Q 2003 J. Chem. Phys. 118 4463
[10] Zhao J, Xu Y and Meng Q T 2009 J. Phys. B 42 165006
[11] Yue X F, Cheng J, Li H, Zhang Y Q and Wu E L 2010 Chin. Phys. B 19 043401
[12] de Miranda M P and Aoiz F J 2004 Phys. Rev. Lett. 93 083201
[13] Aguado A, Paniagua M, Lara M and Roncero O 1997 J. Chem. Phys. 107 10085
[14] Jasper A W, Hack M D, Truhlar D G and Piecuch P 2002 J. Chem. Phys. 116 8353
[15] Becker C H, Casavecchia P, Teidemann P W, Valentini J J and Lee Y T 1980 J. Chem. Phys. 73 2833
[16] Hudson A J, Oh H B, Polanyi J C and Piecuch P 2000 J. Chem. Phys. 113 9897
[17] Cheng J and Yue X F 2011 Chin. Phys. Lett. 28 083102
[18] Wang T and Yue X F 2011 Chin. Phys. Lett. 28 023101
[19] Zhang J Z H and Miller W H 1989 J. Chem. Phys. 91 1528
[20] Chen R and Guo H 1996 J. Chem. Phys. 105 3569
[21] Weck P F and Balakrishnan N 2005 J. Chem. Phys. 122 234310
[22] Aguado A, Paniagua M, Lara M and Roncero O 1997 J. Chem. Phys. 106 1013
[23] Wang M L, Han K L and He G Z 1998 J. Phys. Chem. A 102 20204
[24] Chen M D, Han K L and Lou N Q 2002 Chem. Phys. Lett. 357 483
[25] Zhang X and Han K L 2006 Int. J. Quant. Chem. 106 1815
[26] Liu S L and Shi Y 2011 Chin. Phys. B 20 013404
[27] Liu Y F, Zhang W, Shi D H and Sun J F 2009 Chin. Phys. B 18 4264
[28] Xu W W, Liu X G, Luan S X, Sun S S and Zhang Q G 2009 Chin. Phys. B 18 339
[29] Chu T S, Zhang H, Yuan S P, Fu A P, Si H Z, Tian F H and Duan Y B 2009 J. Phys. Chem. A 113 3470
[30] Liu Y F, He X H, Shi D H and Sun J F 2011 Chin. Phys. B 20 078201
[31] Xu Y, Zhao J, Yue D G, Liu H, Zheng X Y and Meng Q T 2009 Chin. Phys. B 18 5308
[32] Zhang W Q, Cong S L, Zhang C H, Xu X S and Chen M D 2009 J. Phys. Chem. A 113 4192
[33] Ge M H and Zheng Y J 2011 Chin. Phys. B 20 083401
[34] Li X H, Wang M S, Pino H, Yang C L and Ma L Z 2009 Phys. Chem. Chem. Phys. 11 10438
[35] Zhao J, Xu Y and Meng Q T 2010 Chin. Phys. B 19 063401
[36] Yue D G, Zheng X Y, Liu H and Meng Q T 2009 Chin. Phys. B 18 1479
[37] Zhang W, Liu Y F and He X 2010 Chem. Phys. Lett. 489 237
[1] Effect of isotope on state-to-state dynamics for reactive collision reactions O(3P)+H2+→OH++H and O(3P)+H2+→OH+H+ in ground state 12A" and first excited 12A' potential energy surfaces
Juan Zhao(赵娟), Ting Xu(许婷), Lu-Lu Zhang(张路路), Li-Fei Wang(王立飞). Chin. Phys. B, 2020, 29(2): 023105.
[2] Quasi-classical trajectory study of H+LiH (v=0, 1, 2, j=0)→Li+H2 reaction on a new global potential energy surface
Yu-Liang Wang(王玉良), De-Zhi Su(宿德志), Cun-Hai Liu(刘存海), Hui Li(李慧). Chin. Phys. B, 2019, 28(8): 083402.
[3] Isotope effect and Coriolis coupling effect forthe Li + H(D)Cl→LiCl + H(D) reaction
Hongsheng Zhai(翟红生), Guanglei Liang(梁广雷), Junxia Ding(丁俊霞), Yufang Liu(刘玉芳). Chin. Phys. B, 2019, 28(5): 053401.
[4] Dynamics of the Au+H2 reaction by time-dependent wave packet and quasi-classical trajectory methods
Yong Zhang(张勇), Chengguo Jiang(姜成果). Chin. Phys. B, 2019, 28(12): 123101.
[5] Dynamics of the CH4+O(3P)→CH3(ν=0)+OH(ν'=0) reaction
Zhong-An Jiang(蒋仲安), Ya Peng(彭亚), Ju-Shi Chen(陈举师), Gui Lan(兰桂), Hao-Yu Lin(林浩宇). Chin. Phys. B, 2018, 27(6): 063401.
[6] Theoretical study of the radiative decay processes in H+(D+, T+)-Be collisions
Huilin Wei(魏惠琳), Xiaojun Liu(刘晓军). Chin. Phys. B, 2018, 27(12): 123101.
[7] Laser phase effect on asymmetric harmonic distribution in H2+
Li-Qiang Feng(冯立强), Wen-Liang Li(李文亮), Hui Liu(刘辉). Chin. Phys. B, 2017, 26(4): 044206.
[8] Intrinsic product polarization and branch ratio in theS(1D, 3P)+HD reaction on three electronic states
Lin Li(李琳), Shunle Dong(董顺乐). Chin. Phys. B, 2016, 25(9): 093401.
[9] Effects of collision energy and rotational quantum number on stereodynamics of the reactions: H(2S)+NH(v=0, j=0, 2, 5, 10)→N(4S)+H2
Wei Wang(王伟), Yong-Jiang Yu(于永江), Gang Zhao(赵刚), Chuan-Lu Yang(杨传路). Chin. Phys. B, 2016, 25(8): 083402.
[10] Energy and rotation-dependent stereodynamics of H(2S) + NH(a1Δ)→H2(X1Σg+) + N(2D) reaction
Yong-Qing Li(李永庆), Yun-Fan Yang(杨云帆), Yang Yu(于洋), Yong-jia Zhang(张永嘉), Feng-Cai Ma(马凤才). Chin. Phys. B, 2016, 25(2): 023401.
[11] Stereodynamics of the reactions: F+H2/HD/HT→FH+H/D/T
Chi Xiao-Lin (迟晓琳), Zhao Jin-Feng (赵金峰), Zhang Yong-Jia (张永嘉), Ma Feng-Cai (马凤才), Li Yong-Qing (李永庆). Chin. Phys. B, 2015, 24(5): 053401.
[12] Quasi-classical trajectory study of collision energy effect on the stereodynamics of H + BrO→O + HBr reaction
Xie Ting-Xian (解廷献), Zhang Ying-Ying (张莹莹), Shi Ying (石英), Li Ze-Rui (李泽瑞), Jin Ming-Xing (金明星). Chin. Phys. B, 2015, 24(4): 043402.
[13] Theoretical prediction of energy dependence for D+BrO→DBr+O reaction: The rate constant and product rotational polarization
Zhang Ying-Ying (张莹莹), Xie Ting-Xian (解廷献), Li Ze-Rui (李泽瑞), Shi Ying (石英), Jin Ming-Xing (金明星). Chin. Phys. B, 2015, 24(3): 038201.
[14] Vector correlations study of the reaction N(2D)+ H2(X1Σg+)→NH(a1Δ)+ H(2S) with different collision energies and reagent vibration excitations
Li Yong-Qing (李永庆), Zhang Yong-Jia (张永嘉), Zhao Jin-Feng (赵金峰), Zhao Mei-Yu (赵美玉), Ding Yong (丁勇). Chin. Phys. B, 2015, 24(11): 113402.
[15] Effects of the vibrational and rotational excitation of reagent on the stereodynamics of the reaction S(3P) + H2→SH + H
Shan Guang-Ling (单广玲), Wang Mei-Shan (王美山), Yang Chuan-Lu (杨传路), Li Yan-Qing (李艳青). Chin. Phys. B, 2014, 23(6): 068201.
No Suggested Reading articles found!