Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(4): 044206    DOI: 10.1088/1674-1056/26/4/044206
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Laser phase effect on asymmetric harmonic distribution in H2+

Li-Qiang Feng(冯立强)1,2, Wen-Liang Li(李文亮)1,2,3, Hui Liu(刘辉)1
1 College of Science, Liaoning University of Technology, Jinzhou 121000, China;
2 State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
3 Key Laboratory at Universities of Education Department of Xinjiang Uygur Autonomous Region for New Energy Materials, Xinjiang Institute of Engineering, Urumqi 830091, China
Abstract  The laser phase effect on the spatial distribution of the molecular high-order harmonic generation (MHHG) spectrum from H2+ is theoretically investigated through solving the Non-Bohn-Oppenheimer (NBO) time-dependent Schrödinger equation (TDSE). The results are shown as follows. (i) The generated harmonics from the two nuclei each present an asymmetric distribution. Particularly, when the laser phases are chosen from 0.0π to 0.6π and from 1.7π to 2.0π, the contribution from the negative-H plays a main role in harmonic generation. When the laser phases are chosen from 0.7π to 1.6π, the contribution from the positive-H to the harmonic generation is remarkably enhanced and becomes greater than that from the negative-H. The electron localization, the time-frequency analyses of the harmonic spectrum and the time-dependent wave function are shown to explain the asymmetric harmonic distribution in H2+, which provides us with a method to control the electron motion in molecules. (ii) As the pulse duration increases, the asymmetric distributions of the MHHG in two H nuclei decrease. (iii) Isotope investigation shows that the asymmetric harmonic distribution can be reduced by introducing the heavy nucleus (i.e., D2+).
Keywords:  molecular high-order harmonic generation      spatial distribution of molecular harmonics      laser phase effect      isotope effect  
Received:  07 October 2016      Revised:  16 November 2016      Accepted manuscript online: 
PACS:  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  32.80.Fb (Photoionization of atoms and ions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11504151), the Doctoral Scientific Research Foundation of Liaoning Province, China (Grant No. 201501123), and the Scientific Research Foundation of Liaoning Provincial Education Department, China (Grant No. L2014242).
Corresponding Authors:  Li-Qiang Feng, Hui Liu     E-mail:  lqfeng_lngy@126.com,lqfeng@lnut.edu.cn;phys_lngy@126.com

Cite this article: 

Li-Qiang Feng(冯立强), Wen-Liang Li(李文亮), Hui Liu(刘辉) Laser phase effect on asymmetric harmonic distribution in H2+ 2017 Chin. Phys. B 26 044206

[1] Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163
[2] Yuan K J and Bandrauk A D 2013 Phys. Rev. Lett. 110 023003
[3] Zhou X X, Tong X M, Zhao Z X and Lin C D 2005 Phys. Rev. A 71 061801
[4] Zhang Q B, Lu P X, Hong W Y, Liao Q and Wang S Y 2009 Phys. Rev. A 80 033405
[5] Feng L Q and Chu T S 2012 J. Chem. Phys. 136 054102
[6] Yu C, He H X, Wang Y H, Shi Q, Zhang Y D and Lu R F 2014 J. Phys. B: At. Mol. Opt. Phys. 47 055601
[7] Corkum P B 1993 Phys. Rev. Lett. 71 1994
[8] Lan P F, Lu P X, Cao W, Li Y H and Wang X L 2007 Phys. Rev. A 76 021801
[9] Telnov D A and Chu S I 2009 Phys. Rev. A 80 043412
[10] Chen Y J and Zhang B 2012 Phys. Rev. A 86 023415
[11] Bian X B and Bandrauk A D 2010 Phys. Rev. Lett. 105 093903
[12] Miao X Y and Zhao C P 2014 Laser Phys. Lett. 11 115301
[13] Feng L Q and Liu H 2015 J. Mol. Model. 21 43
[14] Zhang J, Ge X L, Wang T, Xu T T, Guo J and Liu X S 2015 Phys. Rev. A 92 013418
[15] Zhang J, Pan X F, Xia C L, Du D, Xu T T, Guo J and Liu X S 2016 Laser Phys. Lett. 13 075302
[16] Pei Y N and Miao X Y 2014 Chin. Phys. Lett. 31 104202
[17] Du H, Pan X F, Liu H F, Zhang H D, Zhang J, Guo J and Liu X S 2016 Chin. Phys. B 25 093202
[18] Zhang J, Liu H F, Pan X F, Du H, Guo J and Liu X S 2016 Chin. Phys. B 25 053202
[19] Lu R F, Zhang P Y and Han K L 2008 Phys. Rev. E 77 066701
[20] Feng L Q and Chu T S 2012 J. Mol. Model. 18 5097
[21] Hu J, Han K L and He G Z 2005 Phys. Rev. Lett. 95 123001
[22] Feng L Q 2015 Phys. Rev. A 92 053832
[23] Yavuz I, Ciappina M F, Chacón A, Altun Z, Kling M F and Lewenstein M 2016 Phys. Rev. A 93 033404
[24] Burnett K, Reed V C, Cooper J and Knight P L 1992 Phys. Rev. A 45 3347
[25] Antoine P, Piraux B and Maquet A 1995 Phys. Rev. A 51 R1750
[1] Isotope effect and Coriolis coupling effect forthe Li + H(D)Cl→LiCl + H(D) reaction
Hongsheng Zhai(翟红生), Guanglei Liang(梁广雷), Junxia Ding(丁俊霞), Yufang Liu(刘玉芳). Chin. Phys. B, 2019, 28(5): 053401.
[2] Theoretical study of the radiative decay processes in H+(D+, T+)-Be collisions
Huilin Wei(魏惠琳), Xiaojun Liu(刘晓军). Chin. Phys. B, 2018, 27(12): 123101.
[3] Stereodynamics of the reactions: F+H2/HD/HT→FH+H/D/T
Chi Xiao-Lin (迟晓琳), Zhao Jin-Feng (赵金峰), Zhang Yong-Jia (张永嘉), Ma Feng-Cai (马凤才), Li Yong-Qing (李永庆). Chin. Phys. B, 2015, 24(5): 053401.
[4] Probing dynamic interference in high-order harmonic generation from long-range molecular ion:Bohmian trajectory investigation
Wang Jun (王俊), Wang Bing-Bing (王兵兵), Guo Fu-Ming (郭福明), Li Su-Yu (李苏宇), Ding Da-Jun (丁大军), Chen Ji-Gen (陈基根), Zeng Si-Liang (曾思良), Yang Yu-Jun (杨玉军). Chin. Phys. B, 2014, 23(5): 053201.
[5] Quasi-classical trajectory study of the isotope effect on the stereodynamics in the reaction H(2S)+CH(X2Π; v=0, j=1)→C(1D)+H2(X1Σg+)
Wang Yun-Hui (王允辉), Xiao Chuan-Yun (肖传云), Deng Kai-Ming (邓开明), Lu Rui-Feng (陆瑞锋). Chin. Phys. B, 2014, 23(4): 043401.
[6] Stereodynamics in reaction O(1D)+CH4→OH+CH3
Sha Guang-Yan (沙广燕), Yuan Jiu-Chuang (袁久闯), Meng Chang-Gong (孟长功), Chen Mao-Du (陈茂笃). Chin. Phys. B, 2014, 23(1): 018202.
[7] Stereodynamics study of the exchange reaction O(3P) + CH4→H + OCH3
Cheng Da-Hai (程大海), Yuan Jiu-Chuang (袁久闯), Yang Tian-Gang (杨天罡), Chen Mao-Du (陈茂笃). Chin. Phys. B, 2013, 22(6): 068202.
[8] Isotope effect on the stereodynamics for the collision reaction H+LiF(v = 0, j = 0)→ HF+Li
Yue Xian-Fang (岳现房 ). Chin. Phys. B, 2012, 21(7): 073401.
[9] Hydrogenation, structure and magnetic properties of La(Fe0.91Si0.09)13 hydrides and deuterides
Wang Zhi-Cui(王志翠), He Lun-Hua(何伦华), F. Cuevas, M. Latroche, Shen Jun(沈俊), and Wang Fang-Wei(王芳卫). Chin. Phys. B, 2011, 20(6): 067502.
[10] Theoretical study of stereodynamics for the reaction O(3P) +D2 (v=0, j=0) $\to$ OD+D and isotope effect
Xu Zeng-Hui(许增慧) and Zong Fu-Jian(宗福建). Chin. Phys. B, 2011, 20(6): 063104.
[11] MRCI study of spectroscopic and molecular properties of X1$\varSigma$g+ and A1$\varPi$u electronic states of the C2 radical
Zhang Xiao-Niu(张小妞), Shi De-Heng(施德恒), Sun Jin-Feng(孙金锋), and Zhu Zun-Lue(朱遵略) . Chin. Phys. B, 2011, 20(4): 043105.
[12] Investigation of isotope effects of dynamic properties for H(D) +OF reactions by the quasi-classical trajectory method
Zhao Juan(赵娟), Xu Yan(许燕), and Meng Qing-Tian(孟庆田). Chin. Phys. B, 2010, 19(6): 063403.
[13] Stereodynamics study of reactions N(2D)+HD→NH+D and ND+H
Yue Xian-Fang(岳现房), Cheng Jie(程杰), Li Hong(李宏), Zhang Yong-Qiang(张永强), and Emilia L. Wu . Chin. Phys. B, 2010, 19(4): 043401.
[14] Spectroscopic parameters and molecular constants of HI(X1Σ+), DI(X1Σ+) and TI(X1Σ+) isotope molecules
Zhang Xiao-Niu(张小妞), Shi De-Heng(施德恒), Zhu Zun-Lue(朱遵略), and Sun Jin-Feng(孙金锋). Chin. Phys. B, 2010, 19(12): 123501.
[15] Theoretical investigations of spectroscopic parameters and molecular constants for electronic ground state of Cl2 and its isotopes
Shi De-Heng(施德恒), Zhang Xiao-Niu(张小妞), Liu Hui(刘慧), Zhu Zun-Lue(朱遵略), and Sun Jin-Feng(孙金锋). Chin. Phys. B, 2010, 19(10): 103401.
No Suggested Reading articles found!