Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(6): 067306    DOI: 10.1088/1674-1056/21/6/067306
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Modulation of electrical and optical properties of gallium-doped ZnO films by radio frequency magnetron sputtering

Liang Shuang(梁爽), Mei Zeng-Xia(梅增霞), and Du Xiao-Long(杜小龙)
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Ga-doped ZnO (GZO) films are prepared on amorphous glass substrates at room temperature by radio frequency magnetron sputtering. The results reveal that the gallium doping efficiency, which will have an important influence on the electrical and optical properties of the film, can be governed greatly by the deposition pressure and film thickness. The position shifts of the ZnO (002) peaks in X-ray diffraction (XRD) measurements and the varied Hall mobility and carrier concentration confirms this result. The low Hall mobility is attributed to the grain boundary barrier scattering. The estimated height of barrier decreases with the increase of carrier concentration, and the trapping state density is nearly constant. According to defect formation energies and relevant chemical reactions, the photoluminescence (PL) peaks at 2.46 eV and 3.07 eV are attributed to oxygen vacancies and zinc vacancies, respectively. The substitution of more Ga atoms for Zn vacancies with the increase in film thickness is also confirmed by the PL spectrum. The obvious blueshift of the optical bandgap with an increase of carrier concentration is explained well by the Burstein-Moss (BM) effect. The bandgap difference between 3.18 eV and 3.37 eV, about 0.2 eV, is attributed to the metal-semiconductor transition.
Keywords:  doping efficiency      Hall mobility      photoluminescence      Burstein-Moss effect  
Received:  21 December 2011      Revised:  10 February 2012      Accepted manuscript online: 
PACS:  73.61.Ga (II-VI semiconductors)  
  78.55.Et (II-VI semiconductors)  
  72.10.Fk (Scattering by point defects, dislocations, surfaces, and other imperfections (including Kondo effect))  
  81.15.Cd (Deposition by sputtering)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61076007 and 11174348), the National Basic Research Program of China (Grant Nos. 2009CB929404 and 2011CB302002), and the Knowledge Innovation Project of the Chinese Academy of Sciences.
Corresponding Authors:  Mei Zeng-Xia     E-mail:  zxmei@aphy.iphy.ac.cn

Cite this article: 

Liang Shuang(梁爽), Mei Zeng-Xia(梅增霞), and Du Xiao-Long(杜小龙) Modulation of electrical and optical properties of gallium-doped ZnO films by radio frequency magnetron sputtering 2012 Chin. Phys. B 21 067306

[1] Noginov M A, Gu L, Livenere J, Zhu G, Pradhan A K, Mundle R, Bahoura M, Barnakov Y A and Podolskiy V A 2011 Appl. Phys. Lett. 99 021101
[2] Kenji N, Hiromichi O, Kazushige U, Toshio K, Masahiro H and Hideo H 2003 Science 300 1269
[3] Norris B J, Anderson J and Wager J F 2003 J. Phys. D: Appl. Phys. 36 L105
[4] Cao X, Li X M, Gao X D, Liu X G, Yang C, Yang R and Jin P 2011 J. Phys. D: Appl. Phys. 44 255104
[5] Özg黵 Ü, Alivov Y I, Liu C, Teke A, Reshchikvo M A, Avrutin V, Dogan S, Cho S J and Morkoç H 2005 J. Appl. Phys. 98 041301
[6] John F W 2003 Science 300 1245
[7] Ellmer K 2001 J. Phys. D: Appl. Phys. 34 3097
[8] Minami T 2000 MRS Bull. 25 38
[9] Tsukazaki A, Ohtomo A, Onuma T, Ohtani M, Makino T, Sumiya M, Ohtani K, Chichibu S F, Fuke S, Segawa Y, Ohno H, Koinuma H and Kawasaki M 2005 Nat. Mater. 4 42
[10] Look D C, Leedy K D, Vines L, Svensson B G, Zubiaga A, Tuomisto F, Doutt D R and Brillson L J 2011 Phys. Rev. B 84 115202
[11] Du X L, Mei Z X, Liu Z L, Guo Y, Zhang T C, Hou Y N, Zhang Z, Xue Q K and Kuznetsov A Y 2009 Adv. Mater. 21 4625
[12] Yan Y F, Zhang S B and Pantelides S T 2001 Phys. Rev. Lett. 86 5723
[13] Van de Walle C G 2000 Phys. Rev. Lett. 85 1012
[14] Janotti A and Van de Walle C G 2007 Phys. Rev. B 76 165202
[15] Bundesmann C, Ashkenov N, Schubert M, Spemann D, Butz T, Kaidashev E M, Lorenz M and Grundmann M 2003 Appl. Phys. Lett. 83 1974
[16] Hiroyuki F and Michio K 2005 Phys. Rev. B 71 075109
[17] Karger M and Schilling M 2005 Phys. Rev. B 71 075304
[18] Jia H, Chen Y H, Liu G H, Liu X L, Yang S Y and Wang Z G 2009 J. Phys. D: Appl. Phys. 42 015415
[19] Babar R, Deshamukh P R, Deokate R J, Haranath D, Bhosale C H and Rajpure K Y 2008 J. Phys. D: Appl. Phys. 41 135404
[20] Gregory J E and Xiao D Z 2007 Thin Solid Films 515 7025
[21] Ilan S, Henryk T and Venkatesh N 2004 Phys. Rev. B 69 245401
[22] Vlasenko L S, Watkins G D and Helbig R 2005 Phys. Rev. B 71 115205
[23] Song P K, Watanabe M, Kon M, Mitsui A and Shigesato Y 2002 Thin Solid Films 411 82
[24] Tsuji T and Hirohashi M 2000 Appl. Surf. Sci. 157 47
[25] Morito M and Kenichi O 1988 Appl. Phys. Lett. 53 1393
[26] Hong S K, Jeong S K, Jae W K and Sang Y L 2004 J. Appl. Phys. 95 1246
[27] Tian Z, Voigt J A and Liu J 2003 Nat. Mater. 2 821
[28] Agashe C, Kluth O, H黳kes J, Zastrow U, Rech B and Wuttig M 2004 J. Appl. Phys. 95 1911
[29] Masetti G, Severi M and Solmi S 1983 IEEE Trans. Electron Dev. ED30 764
[30] Tadatsugu M 2008 Thin Solid Films 516 5822
[31] Takahiro Y, Aki M, Seiichi K, Hisao M, Naoki Y and Tetsuya Y 2007 Appl. Phys. Lett. 91 051915
[32] Valerie R C and James P S 2008 Phys. Rev. B 77 144111
[33] Wen W C 2005 Nat. Mater. 4 727
[34] Yu X Z, Kanazawa N, Onose Y and Kimoto K 2011 Nat. Mater. 10 106
[35] John Y W S 1975 J. Appl. Phys. 46 5247
[36] Cornelius S, Vinnichenko M, Shevchenko N, Rogozin A, Kolitsch A and Möller W 2009 Appl. Phys. Lett. 94 042103
[37] Takaaki T, Shuichi N, Naoki O and Takeshi O 1999 Jpn. J. Appl. Phys. 38 3682
[38] Cheol H A, Young Y K, Dong C K, Sanjay K M and Hyung K C 2009 J. Appl. Phys. 105 013502
[39] Xu P S, Sun Y M, Shi C S, Xu F Q and Pan H B 2003 Nucl. Instrum. Methods B 199 286
[40] Zubiaga A, Garcia J A, Plazaola F, Tuomisto F, Saarinen K, Zuniga P J and Munoz S V 2006 J. Appl. Phys. 99 053516
[41] Gregory W T, Jules L R and Thomas O M 2000 J. Appl. Phys. 87 117
[42] Elias B 1954 Phys. Rev. 93 632
[43] Mott N F 1961 Philos. Mag. 6 287
[1] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[2] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[3] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[4] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[5] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[6] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[7] Development of ZnTe film with high copper doping efficiency for solar cells
Xin-Lu Lin(林新璐), Wen-Xiong Zhao(赵文雄), Qiu-Chen Wu(吴秋晨), Yu-Feng Zhang(张玉峰), Hasitha Mahabaduge, and Xiang-Xin Liu(刘向鑫). Chin. Phys. B, 2022, 31(10): 108802.
[8] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[9] Pressure- and temperature-dependent luminescence from Tm3+ ions doped in GdYTaO4
Peng-Yu Zhou(周鹏宇), Xiu-Ming Dou(窦秀明), Bao-Quan Sun(孙宝权), Ren-Qin Dou(窦仁琴), Qing-Li Zhang(张庆礼), Bao Liu(刘鲍), Pu-Geng Hou(侯朴赓), Kai-Lin Chi(迟凯粼), and Kun Ding(丁琨). Chin. Phys. B, 2022, 31(1): 017101.
[10] Controllable preparation and disorder-dependent photoluminescence of morphologically different C60 microcrystals
Wen Cui(崔雯), De-Jun Li(李德军), Jin-Liang Guo(郭金良), Lang-Huan Zhao(赵琅嬛), Bing-Bing Liu(刘冰冰), and Shi-Shuai Sun(孙士帅). Chin. Phys. B, 2021, 30(8): 086101.
[11] Thermodynamic criterion for searching high mobility two-dimensional electron gas at KTaO3 interface
Wen-Xiao Shi(时文潇), Hui Zhang(张慧), Shao-Jin Qi(齐少锦), Jin-E Zhang(张金娥), Hai-Lin Huang(黄海林), Bao-Gen Shen(沈保根), Yuan-Sha Chen(陈沅沙), and Ji-Rong Sun(孙继荣). Chin. Phys. B, 2021, 30(7): 077302.
[12] Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation
Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056106.
[13] Combined effects of carrier scattering and Coulomb screening on photoluminescence in InGaN/GaN quantum well structure with high In content
Rui Li(李睿), Ming-Sheng Xu(徐明升), Peng Wang(汪鹏), Cheng-Xin Wang(王成新), Shang-Da Qu(屈尚达), Kai-Ju Shi(时凯居), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2021, 30(4): 047801.
[14] Microstructure, optical, and photoluminescence properties of β -Ga2O3 films prepared by pulsed laser deposition under different oxygen partial pressures
Rui-Rui Cui(崔瑞瑞), Jun Zhang(张俊), Zi-Jiang Luo(罗子江), Xiang Guo(郭祥), Zhao Ding(丁召), and Chao-Yong Deng(邓朝勇). Chin. Phys. B, 2021, 30(2): 028505.
[15] Exciton emissions of CdS nanowire array fabricated on Cd foil by the solvothermal method
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Ya-Juan Hao(郝亚娟), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(1): 016104.
No Suggested Reading articles found!