CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Modulation of electrical and optical properties of gallium-doped ZnO films by radio frequency magnetron sputtering |
Liang Shuang(梁爽), Mei Zeng-Xia(梅增霞)†, and Du Xiao-Long(杜小龙) |
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract Ga-doped ZnO (GZO) films are prepared on amorphous glass substrates at room temperature by radio frequency magnetron sputtering. The results reveal that the gallium doping efficiency, which will have an important influence on the electrical and optical properties of the film, can be governed greatly by the deposition pressure and film thickness. The position shifts of the ZnO (002) peaks in X-ray diffraction (XRD) measurements and the varied Hall mobility and carrier concentration confirms this result. The low Hall mobility is attributed to the grain boundary barrier scattering. The estimated height of barrier decreases with the increase of carrier concentration, and the trapping state density is nearly constant. According to defect formation energies and relevant chemical reactions, the photoluminescence (PL) peaks at 2.46 eV and 3.07 eV are attributed to oxygen vacancies and zinc vacancies, respectively. The substitution of more Ga atoms for Zn vacancies with the increase in film thickness is also confirmed by the PL spectrum. The obvious blueshift of the optical bandgap with an increase of carrier concentration is explained well by the Burstein-Moss (BM) effect. The bandgap difference between 3.18 eV and 3.37 eV, about 0.2 eV, is attributed to the metal-semiconductor transition.
|
Received: 21 December 2011
Revised: 10 February 2012
Accepted manuscript online:
|
PACS:
|
73.61.Ga
|
(II-VI semiconductors)
|
|
78.55.Et
|
(II-VI semiconductors)
|
|
72.10.Fk
|
(Scattering by point defects, dislocations, surfaces, and other imperfections (including Kondo effect))
|
|
81.15.Cd
|
(Deposition by sputtering)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61076007 and 11174348), the National Basic Research Program of China (Grant Nos. 2009CB929404 and 2011CB302002), and the Knowledge Innovation Project of the Chinese Academy of Sciences. |
Corresponding Authors:
Mei Zeng-Xia
E-mail: zxmei@aphy.iphy.ac.cn
|
Cite this article:
Liang Shuang(梁爽), Mei Zeng-Xia(梅增霞), and Du Xiao-Long(杜小龙) Modulation of electrical and optical properties of gallium-doped ZnO films by radio frequency magnetron sputtering 2012 Chin. Phys. B 21 067306
|
[1] |
Noginov M A, Gu L, Livenere J, Zhu G, Pradhan A K, Mundle R, Bahoura M, Barnakov Y A and Podolskiy V A 2011 Appl. Phys. Lett. 99 021101
|
[2] |
Kenji N, Hiromichi O, Kazushige U, Toshio K, Masahiro H and Hideo H 2003 Science 300 1269
|
[3] |
Norris B J, Anderson J and Wager J F 2003 J. Phys. D: Appl. Phys. 36 L105
|
[4] |
Cao X, Li X M, Gao X D, Liu X G, Yang C, Yang R and Jin P 2011 J. Phys. D: Appl. Phys. 44 255104
|
[5] |
Özg黵 Ü, Alivov Y I, Liu C, Teke A, Reshchikvo M A, Avrutin V, Dogan S, Cho S J and Morkoç H 2005 J. Appl. Phys. 98 041301
|
[6] |
John F W 2003 Science 300 1245
|
[7] |
Ellmer K 2001 J. Phys. D: Appl. Phys. 34 3097
|
[8] |
Minami T 2000 MRS Bull. 25 38
|
[9] |
Tsukazaki A, Ohtomo A, Onuma T, Ohtani M, Makino T, Sumiya M, Ohtani K, Chichibu S F, Fuke S, Segawa Y, Ohno H, Koinuma H and Kawasaki M 2005 Nat. Mater. 4 42
|
[10] |
Look D C, Leedy K D, Vines L, Svensson B G, Zubiaga A, Tuomisto F, Doutt D R and Brillson L J 2011 Phys. Rev. B 84 115202
|
[11] |
Du X L, Mei Z X, Liu Z L, Guo Y, Zhang T C, Hou Y N, Zhang Z, Xue Q K and Kuznetsov A Y 2009 Adv. Mater. 21 4625
|
[12] |
Yan Y F, Zhang S B and Pantelides S T 2001 Phys. Rev. Lett. 86 5723
|
[13] |
Van de Walle C G 2000 Phys. Rev. Lett. 85 1012
|
[14] |
Janotti A and Van de Walle C G 2007 Phys. Rev. B 76 165202
|
[15] |
Bundesmann C, Ashkenov N, Schubert M, Spemann D, Butz T, Kaidashev E M, Lorenz M and Grundmann M 2003 Appl. Phys. Lett. 83 1974
|
[16] |
Hiroyuki F and Michio K 2005 Phys. Rev. B 71 075109
|
[17] |
Karger M and Schilling M 2005 Phys. Rev. B 71 075304
|
[18] |
Jia H, Chen Y H, Liu G H, Liu X L, Yang S Y and Wang Z G 2009 J. Phys. D: Appl. Phys. 42 015415
|
[19] |
Babar R, Deshamukh P R, Deokate R J, Haranath D, Bhosale C H and Rajpure K Y 2008 J. Phys. D: Appl. Phys. 41 135404
|
[20] |
Gregory J E and Xiao D Z 2007 Thin Solid Films 515 7025
|
[21] |
Ilan S, Henryk T and Venkatesh N 2004 Phys. Rev. B 69 245401
|
[22] |
Vlasenko L S, Watkins G D and Helbig R 2005 Phys. Rev. B 71 115205
|
[23] |
Song P K, Watanabe M, Kon M, Mitsui A and Shigesato Y 2002 Thin Solid Films 411 82
|
[24] |
Tsuji T and Hirohashi M 2000 Appl. Surf. Sci. 157 47
|
[25] |
Morito M and Kenichi O 1988 Appl. Phys. Lett. 53 1393
|
[26] |
Hong S K, Jeong S K, Jae W K and Sang Y L 2004 J. Appl. Phys. 95 1246
|
[27] |
Tian Z, Voigt J A and Liu J 2003 Nat. Mater. 2 821
|
[28] |
Agashe C, Kluth O, H黳kes J, Zastrow U, Rech B and Wuttig M 2004 J. Appl. Phys. 95 1911
|
[29] |
Masetti G, Severi M and Solmi S 1983 IEEE Trans. Electron Dev. ED30 764
|
[30] |
Tadatsugu M 2008 Thin Solid Films 516 5822
|
[31] |
Takahiro Y, Aki M, Seiichi K, Hisao M, Naoki Y and Tetsuya Y 2007 Appl. Phys. Lett. 91 051915
|
[32] |
Valerie R C and James P S 2008 Phys. Rev. B 77 144111
|
[33] |
Wen W C 2005 Nat. Mater. 4 727
|
[34] |
Yu X Z, Kanazawa N, Onose Y and Kimoto K 2011 Nat. Mater. 10 106
|
[35] |
John Y W S 1975 J. Appl. Phys. 46 5247
|
[36] |
Cornelius S, Vinnichenko M, Shevchenko N, Rogozin A, Kolitsch A and Möller W 2009 Appl. Phys. Lett. 94 042103
|
[37] |
Takaaki T, Shuichi N, Naoki O and Takeshi O 1999 Jpn. J. Appl. Phys. 38 3682
|
[38] |
Cheol H A, Young Y K, Dong C K, Sanjay K M and Hyung K C 2009 J. Appl. Phys. 105 013502
|
[39] |
Xu P S, Sun Y M, Shi C S, Xu F Q and Pan H B 2003 Nucl. Instrum. Methods B 199 286
|
[40] |
Zubiaga A, Garcia J A, Plazaola F, Tuomisto F, Saarinen K, Zuniga P J and Munoz S V 2006 J. Appl. Phys. 99 053516
|
[41] |
Gregory W T, Jules L R and Thomas O M 2000 J. Appl. Phys. 87 117
|
[42] |
Elias B 1954 Phys. Rev. 93 632
|
[43] |
Mott N F 1961 Philos. Mag. 6 287
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|