Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(6): 067101    DOI: 10.1088/1674-1056/21/6/067101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Theoretical investigation on the electronic structure, elastic properties, and intrinsic hardness of Si2N2O

Ding Ying-Chun(丁迎春), Chen Min(陈敏), Gao Xiu-Ying(高秀英), and Jiang Meng-Heng(蒋孟衡)
College of Optoelectronics Technology, Chengdu University of Information Technology, Chengdu 610225, China
Abstract  According to the density functional theory we systematically study the electronic structure, the mechanical properties and the intrinsic hardness of Si2N2O polymorphs using the first-principles method. The elastic constants of four Si2N2O structures are obtained using the stress-strain method. The mechanical moduli (bulk modulus, Young's modulus, and shear modulus) are evaluated using the Voigt-Reuss-Hill approach. It is found that the tetragonal Si2N2O exhibits a larger mechanical modulus than the other phases. Some empirical methods are used to calculate the Vickers hardnesses of the Si2N2O structures. We further estimate the Vickers hardnesses of the four Si2N2O crystal structures, suggesting all Si2N2O phases are not the superhard compounds. The results imply that the tetragonal Si2N2O is the hardest phase. The hardness of tetragonal Si2N2O is 31.52 GPa which is close to values of β-Si3N4 and γ-Si3N4.
Keywords:  elastic property      Vickers hardness      electronic structure  
Received:  08 September 2011      Revised:  07 December 2011      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  62.20.-x (Mechanical properties of solids)  
  62.20.Qp (Friction, tribology, and hardness)  
Corresponding Authors:  Ding Ying-Chun     E-mail:  dyccqzx@yahoocom.cn

Cite this article: 

Ding Ying-Chun(丁迎春), Chen Min(陈敏), Gao Xiu-Ying(高秀英), and Jiang Meng-Heng(蒋孟衡) Theoretical investigation on the electronic structure, elastic properties, and intrinsic hardness of Si2N2O 2012 Chin. Phys. B 21 067101

[1] Buchanan D A 1999 IBM J. Res. Develop. 43 245
[2] Roucka R, Tolle J, Chizmeshya A V G, Crozier P A, Poweleit C D, Smith D J, Tsong I S T and Kouvetakis J 2002 Phys. Rev. Lett. 88 206102
[3] Roucka R, Tolle J, Crozier P A, Smith D J, Tsong I S T and Kouvetakis J 2001 Appl. Phys. Lett. 79 2080
[4] Kaufman L 1979 Calphad 3 275
[5] Ohashi M, Kanzaki S and Tabata H 1991 J. Am. Ceram. Soc. 74 109
[6] Ohashi M, Kanzaki S and Tabata H 1991 J. Mater. Sci. 26 2608
[7] Brosset C and Idrestedt I 1964 Nature 201 1211
[8] Srinivasa S R, Cartz L, Jorgensen J D, Worlton T G, Beyerlein R A and Billy M 1977 J. Appl. Cryst. 10 167
[9] Sjoeberg J, Helgesson G and Idrestedt I 1991 Acta Cryst. C 47 2438
[10] Radwan M, Kashiwagi T and Miyamoto Y 2003 J. Eur. Ceram. Soc. 23 2337
[11] Xiong LT, Cao M S and Hou Z L 2009 Chin. Phys. Lett. 26 076201
[12] Poon C O, Wong F L, Tong S W, Zhang R Q, Lee C S and Lee S T 2003 Appl. Phys. Lett. 83 1038
[13] Eldada L 2004 Rev. Sci. Instrum. 75 575
[14] Li J S and He S L 2005 Opt. Commun. 254 236
[15] Mirgorodsky A P, Baraton M I and Quintard P 1989 J. Phys: Condens. Matter 1 10053
[16] Yao H Z, Ouyang L Z and Ching W Y 2007 J. Am. Ceram. Soc. 90 3194
[17] Xu Y N and Ching W Y 1995 Phys. Rev. B 51 17379
[18] Ohashi M, Nakamura K, Hirao K, Toriyama M and Kanzaki S 1997 Ceram. International 23 27
[19] Kroll P and Milko M Z 2003 Anorg. Allg. Chem. 629 1737
[20] Sekine T, He H L, Kobayashi T and Shibata K 2006 American Mineralogist 91 463
[21] Haines J and Santoro M 2008 Phys. Rev. B 77 144206
[22] Liu B, Wang J Y, Li F Z, Tong Q F and Zhou Y C 2009 J. Phys. Chem. Solids 70 982
[23] Zhang T, Wu M Q, Zhang S R, Chen S, He M, Wang J M, Zhang D H, He F M and Li Z P 2011 J. Alloys Compd. 509 1739
[24] Chen H C and Yang L J 2011 Acta Phys. Sin. 60 014207 (in Chinese)
[25] Ru Q, Hu S J and Zhao L Z 2011 Acta Phys. Sin. 60 036301 (in Chinese)
[26] Yang T X, Cheng Q, Xu H B and Wang Y X 2010 Acta Phys. Sin. 59 4919 (in Chinese)
[27] Xu H B and Wang Y X 2009 Acta Phys. Sin. 58 5645 (in Chinese)
[28] Gou H Y, Gao F M, Zhang J W and Li Z P 2011 Chin. Phys. B 20 016201
[29] Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X L and Burke K 2008 Phys. Rev. Lett. 100 136406
[30] Laasonen K, Pasquarello A, Car R, Lee C and Vanderbilt D 1993 Phys. Rev. B 47 10142
[31] Ching W Y 2004 J. Am. Ceram. Soc. 87 1996
[32] Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 76 054115
[33] Ravindran P, Fast L, Korzhavyi P A, Johansson B, Wills J and Eriksson O 1998 J. Appl. Phys. 84 4891
[34] Xiao B, Feng J, Zhou C T, Jiang Y H and Zhou R 2011 J. Appl. Phys. 109 023507
[35] Boch P and Glandus J C 1979 J. Mater. Sci. 14 379
[36] Jiang X, Zhao J J and Jiang X 2011 Compd. Mater. Sci. 50 2287
[37] Miao N H, Sa B S, Zhou J and Sun Z M 2011 Compd. Mater. Sci. 50 1559
[38] Gao F M, He J L, Wu E D, Liu S M, Yu D L, Li D C, Zhang S Y and Tian Y J 2003 Phys. Rev. Lett. 91 015502
[39] He J L, Guo L C, Yu D L, Liu R P and Tian Y J 2004 Appl. Phys. Lett. 85 5571
[40] Andrievski R A 2001 Int. J. Refract. Met. Hard Mater. 19 447
[41] Kocer C, Hirosaki N and Ogata S 2003 Phys. Rev. B 67 035210
[42] Soignard E, Somayazulu M, Dong J, Sankey O F and McMillan P F 2001 J. Phys.: Condens. Matter 13 557
[43] Jiang J Z, Kragh F, Frost D J, Ståhl K and Lindelov H 2001 J. Phys.: Condens. Matter 13 L515
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[4] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[5] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[6] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[7] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[8] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[9] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[10] Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study
Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2022, 31(10): 107306.
[11] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[12] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[13] Magnetic and electronic properties of two-dimensional metal-organic frameworks TM3(C2NH)12
Zhen Feng(冯振), Yi Li(李依), Yaqiang Ma(马亚强), Yipeng An(安义鹏), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(9): 097102.
[14] Single boron atom anchored on graphitic carbon nitride nanosheet (B/g-C2N) as a photocatalyst for nitrogen fixation: A first-principles study
Hao-Ran Zhu(祝浩然), Jia-Liang Chen(陈嘉亮), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2021, 30(8): 083101.
[15] High-throughput identification of one-dimensional atomic wires and first principles calculations of their electronic states
Feng Lu(卢峰), Jintao Cui(崔锦韬), Pan Liu(刘盼), Meichen Lin(林玫辰), Yahui Cheng(程雅慧), Hui Liu(刘晖), Weichao Wang(王卫超), Kyeongjae Cho, and Wei-Hua Wang(王维华). Chin. Phys. B, 2021, 30(5): 057304.
No Suggested Reading articles found!