Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(6): 066802    DOI: 10.1088/1674-1056/21/6/066802
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

The properties of transparent conducting molybdenum-doped ZnO films grown by radio frequency magnetron sputtering

Xiu Xian-Wu(修显武)a) and Zhao Wen-Jing(赵文静)b)
a. School of Physics and Electronics, Shandong Normal University, Jinan 250014, China;
b. Jinan No.3 Vocational School, Jinan 250001, China
Abstract  Transparent conducting molybdenum-doped zinc oxide films are prepared by radio frequency (RF) magnetron sputtering at ambient temperature. The MoO3 content in the target varies from 0 to 5 wt%, and each film is polycrystalline with a hexagonal structure and a preferred orientation along the c axis. The resistivity first decreases and then increases with the increase in MoO3 content. The lowest resistivity achieved is 9.2 × 10-4 Ω·cm, with a high Hall mobility of 30 cm2·V-1·s-1 and a carrier concentration of 2.3 × 1020 cm-3 at an MoO3 content of 2 wt%. The average transmittance in the visible range is reduced from 91% to 80% with the increase in the MoO3 content in the target.
Keywords:  molybdenum oxide      zinc oxide      magnetron sputtering      transparent conducting oxides  
Received:  01 November 2011      Revised:  25 December 2011      Accepted manuscript online: 
PACS:  68.55.Ln (Defects and impurities: doping, implantation, distribution, concentration, etc.)  
  73.61.Ga (II-VI semiconductors)  
  78.30.Fs (III-V and II-VI semiconductors)  
Fund: Project supported by the Science Foundation of the Education Commission of Shandong Province, China (Grant No. J10LA04).
Corresponding Authors:  Xiu Xian-Wu     E-mail:  xwxiu@sdnu.edu.cn

Cite this article: 

Xiu Xian-Wu(修显武) and Zhao Wen-Jing(赵文静) The properties of transparent conducting molybdenum-doped ZnO films grown by radio frequency magnetron sputtering 2012 Chin. Phys. B 21 066802

[1] Wang Z J, Wang Z J, Li S C, Wang Z H, L? Y M and Yuan J S 2004 Chin. Phys. 13 750
[2] Gustafsson G, Cao Y, Treacy G M, Klavetter F, Colaneri N and Heeger A J 1992 Nature 357 477
[3] Li L N, Chen X L, Wang F, Sun J, Zhang D K, Geng X H and Zhao Y 2011 Acta Phys. Sin. 60 067304 (in Chinese)
[4] Wu C G, Shen J, Li D and Ma G H 2009 Acta Phys. Sin. 58 8623 (in Chinese)
[5] Hamberg I and Granqvist C G 1986 J. Appl. Phys. 60 R123
[6] Kim J S, Granström M, Friend R H, Johansson N, Salaneck W R, Daik R, Feast W J and Cacialli F 1998 J. Appl. Phys. 84 6859
[7] Gautier E, Lorin A, Nunzi J M, Schalchli A, Benattar J J and Vital D 1996 Appl. Phys. Lett. 69 1071
[8] Ataev B M, Bagamadova A M, Mamedov V V, Omaev A K and Rabadanov M R 1999 J. Crystal Growth 198/199 1222
[9] Jeong W J and Park G C 2001 Sol. Energy Mater. Sol. Cells 65 37
[10] Hartnagel H L, Dawar A L, Jain A K and Jagadish C 1995 Semiconducting Transparent Thin Films (Bristol and Philadelphia: Institute of Physics Publishing) p. 4
[11] Shi J L, Ma H, Ma G H, Ma H L and Shen J 2008 Appl. Phys. A 92 357
[12] Fang Z B, Tan Y S, Gong H X, Zhen C M, He Z W and Wang Y Y 2005 Mater. Lett. 59 2611
[13] Minami T, Ida S and Miyata T 2002 Thin Solid Films 416 92
[14] Klug H P and Alexander L 1974 X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials 2nd edn. (New York: Wiley) p. 656
[15] Altamirano-Ju醨ez D C, Torres-Delgado G, Jim閚ez-Sandoval S, Jim閚ez-Sandoval O and Castanedo-P閞ez R 2004 Sol. Energy Mater. Sol. Cells 82 35
[16] Paul G K, Bandyopadhyay S, Sen S K and Sen S 2003 Mater. Chem. Phys. 79 71
[17] Warmsingh C, Yoshida Y, Readey D W, Teplin C W, Perkins J D, Parilla P A, Gedvilas L M, Keyes B M and Ginley D S 2004 J. Appl. Phys. 97 3831
[18] Sanon G, Rup R and Mansingh A 1990 Thin Solid Films 190 287
[19] Kim H, Horwitz J S, Kushto G, Piqu? A, Kafafi Z H, Gilmore C M and Chrisey D B 2000 J. Appl. Phys. 88 6021
[20] Burstein E 1954 Phys. Rev. 93 632
[21] Oh B Y, Jeong M C, Lee W and Myoung J M 2005 J. Crystal Growth 274 453
[1] Effects of preparation parameters on growth and properties of β-Ga2O3 film
Zi-Hao Chen(陈子豪), Yong-Sheng Wang(王永胜), Ning Zhang(张宁), Bin Zhou(周兵), Jie Gao(高洁), Yan-Xia Wu(吴艳霞), Yong Ma(马永), Hong-Jun Hei(黑鸿君), Yan-Yan Shen(申艳艳), Zhi-Yong He(贺志勇), and Sheng-Wang Yu(于盛旺). Chin. Phys. B, 2023, 32(1): 017301.
[2] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[3] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[4] Effects of post-annealing on crystalline and transport properties of Bi2Te3 thin films
Qi-Xun Guo(郭奇勋), Zhong-Xu Ren(任中旭), Yi-Ya Huang(黄意雅), Zhi-Chao Zheng(郑志超), Xue-Min Wang(王学敏), Wei He(何为), Zhen-Dong Zhu(朱振东), and Jiao Teng(滕蛟). Chin. Phys. B, 2021, 30(6): 067307.
[5] CdS/Si nanofilm heterojunctions based on amorphous silicon films: Fabrication, structures, and electrical properties
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), Hong-Chun Huang(黄宏春), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(2): 026101.
[6] RF magnetron sputtering induced the perpendicular magnetic anisotropy modification in Pt/Co based multilayers
Runze Li(李润泽), Yucai Li(李予才), Yu Sheng(盛宇), and Kaiyou Wang(王开友). Chin. Phys. B, 2021, 30(2): 028506.
[7] Band offsets and electronic properties of the Ga2O3/FTO heterojunction via transfer of free-standing Ga2O3 onto FTO/glass
Xia Wang(王霞), Wei-Fang Gu(古卫芳), Yong-Feng Qiao(乔永凤), Zhi-Yong Feng(冯志永), Yue-Hua An(安跃华), Shao-Hui Zhang(张少辉), and Zeng Liu(刘增). Chin. Phys. B, 2021, 30(11): 114211.
[8] Influence of CdS films synthesized by different methods on the photovoltaic performance of CdTe/CdS thin film solar cells
Jun Wang(汪俊), Yuquan Wang(王玉全), Cong Liu(刘聪), Meiling Sun(孙美玲), Cao Wang(王操), Guangchao Yin(尹广超), Fuchao Jia(贾福超), Yannan Mu(牟艳男), Xiaolin Liu(刘笑林), Haibin Yang(杨海滨). Chin. Phys. B, 2020, 29(9): 098802.
[9] Surface potential-based analytical model for InGaZnO thin-film transistors with independent dual-gates
Yi-Ni He(何伊妮), Lian-Wen Deng(邓联文), Ting Qin(覃婷), Cong-Wei Liao(廖聪维), Heng Luo(罗衡), Sheng-Xiang Huang(黄生祥). Chin. Phys. B, 2020, 29(4): 047102.
[10] A systematic study of light dependency of persistent photoconductivity in a-InGaZnO thin-film transistors
Yalan Wang(王雅兰), Mingxiang Wang(王明湘), Dongli Zhang(张冬利), and Huaisheng Wang(王槐生). Chin. Phys. B, 2020, 29(11): 118101.
[11] High-throughput fabrication and semi-automated characterization of oxide thin film transistors
Yanbing Han(韩炎兵), Sage Bauers, Qun Zhang(张群), Andriy Zakutayev. Chin. Phys. B, 2020, 29(1): 018502.
[12] Zinc-oxide nanoparticle-based saturable absorber deposited by simple evaporation technique for Q-switched fiber laser
Syarifah Aloyah Syed Husin, Farah Diana Muhammad, Che Azurahanim Che Abdullah, Siti Huzaimah Ribut, Mohd Zamani Zulkifli, Mohd Adzir Mahdi. Chin. Phys. B, 2019, 28(8): 084207.
[13] Degradation of current-voltage and low frequency noise characteristics under negative bias illumination stress in InZnO thin film transistors
Li Wang(王黎), Yuan Liu(刘远), Kui-Wei Geng(耿魁伟), Ya-Yi Chen(陈雅怡), Yun-Fei En(恩云飞). Chin. Phys. B, 2018, 27(6): 068504.
[14] Density functional theory analysis of electronic structure and optical properties of La-doped Cd2SnO4 transparent conducting oxide
Mei Tang(汤梅), Jia-Xiang Shang(尚家香), Yue Zhang(张跃). Chin. Phys. B, 2018, 27(1): 017101.
[15] A general method for large-scale fabrication of Cu nanoislands/dragonfly wing SERS flexible substrates
Yuhong Wang(王玉红), Mingli Wang(王明利), Lin Shen(沈琳), Yanying Zhu(朱艳英), Xin Sun(孙鑫), Guochao Shi(史国超), Xiaona Xu(许晓娜), Ruifeng Li(李瑞峰), Wanli Ma(马万里). Chin. Phys. B, 2018, 27(1): 017801.
No Suggested Reading articles found!