Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(6): 064205    DOI: 10.1088/1674-1056/21/6/064205
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Three-qubit quantum-gate operation with an SQUID in a cavity

Shi Hui-Min(石惠敏), Yu Ya-Fei(於亚飞), and Zhang Zhi-Ming(张智明)
Laboratory of Nanophotonic Functional Materials and Devices, Laboratory of Quantum Information Technology, South China Normal University, Guangzhou 510006, China
Abstract  We propose a method of realizing a three-qubit quantum gate with a superconducting quantum interference device (SQUID) in a cavity. In this proposal, the gate operation involves the SQUID ground-states and the Fock states of cavity modes b and ĉ. The two field-modes act as the controlling qubits, and the two SQUID states form the target qubit. Since only the metastable lower levels are involved in the gate operation, the gate is not affected by the SQUID decay rates.
Keywords:  SQUID      quantum gate      C2-Phase gate      C2-Not gate  
Received:  14 October 2011      Revised:  25 November 2011      Accepted manuscript online: 
PACS:  42.50.-p (Quantum optics)  
  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
  03.67.-a (Quantum information)  
  03.67.Lx (Quantum computation architectures and implementations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60978009), the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91121023), and the National Basic Research Program of China (Grant No. 2011CBA00200).
Corresponding Authors:  Zhang Zhi-Ming     E-mail:  zmzhang@scnu.edu.cn

Cite this article: 

Shi Hui-Min(石惠敏), Yu Ya-Fei(於亚飞), and Zhang Zhi-Ming(张智明) Three-qubit quantum-gate operation with an SQUID in a cavity 2012 Chin. Phys. B 21 064205

[1] Yu Y, Han S, Chu X, Chu S I and Wang Z 2002 Science 296 889
[2] Majer J B, Paauw F G, Haar A C J, Harmans C J P M and Mooij J E 2005 Phys. Rev. Lett. 94 090501
[3] Gambetta J M, Houck A A and Blais A 2011 Phys. Rev. Lett. 106 030502
[4] Amin M H S, Smirnov A Y and Maassen B A 2003 Phys. Rev. B 67 100508
[5] Yang C P, Chu S I and Han S 2003 Phys. Rev. A 67 042311
[6] Yang C P and Han S 2004 Phys. Lett. A 321 273
[7] Yang C P, Chu S I and Han S 2004 Phys. Rev. A 70 044303
[8] Zhang P, Wang Z D, Sun J D and Sun C P 2005 Phys. Rev. A 71 042301
[9] Song K H, Zhou Z W and Guo G C 2005 Phys. Rev. A 71 052310
[10] Yang C P and Han S 2006 Phys. Rev. A 74 044302
[11] Song K H 2006 Chin. Phys. 15 286
[12] Song K H, Xiang S H, Liu Q and Lu D H 2007 Phys. Rev. A 75 032347
[13] Biswas A and Agarwal G S 2004 Phys. Rev. A 69 062306
[14] Joshi A and Xiao M 2006 Phys. Rev. A 74 052318
[15] Chang J T and Zubairy M S 2008 Phys. Rev. A 77 012329
[16] Wei H R, Di Y M and Wang Y 2010 Sci. Chin. 53 664
[17] Shao X Q, Chen L and Zhang S 2009 Chin. Phys. B 18 3258
[18] Lin Q 2009 Acta Phys. Sin. 58 5983 (in Chinese)
[19] Fan F B 2008 Chin. Phys. Lett. 25 379
[20] Yang C P, Liu Y X and Nori F 2010 Phys. Rev. A 81 062323
[21] Yang C P, Zheng S B and Nori F 2010 Phys. Rev. A 82 062326
[22] Lu P M, Song J and Xia Y 2010 Chin. Phys. Lett. 27 030302
[23] Narducci L M, Eidson W E, Furcinitti P and Eteson D C 1977 Phys. Rev. A 16 1665
[1] Residual field suppression for magnetocardiography measurement inside a thin magnetically shielded room using bi-planar coil
Kang Yang(杨康), Hong-Wei Zhang(张宏伟), Qian-Nian Zhang(张千年),Jun-Jun Zha(查君君), and Deng-Chao Huang(黄登朝). Chin. Phys. B, 2022, 31(7): 070701.
[2] Shortcut-based quantum gates on superconducting qubits in circuit QED
Zheng-Yin Zhao(赵正印), Run-Ying Yan(闫润瑛), and Zhi-Bo Feng(冯志波). Chin. Phys. B, 2021, 30(8): 088501.
[3] Controllable microwave frequency comb generation in a tunable superconducting coplanar-waveguide resonator
Shuai-Peng Wang(王帅鹏), Zhen Chen(陈臻), and Tiefu Li(李铁夫). Chin. Phys. B, 2021, 30(4): 048501.
[4] Micro-scale photon source in a hybrid cQED system
Ming-Bo Chen(陈明博), Bao-Chuan Wang(王保传), Si-Si Gu(顾思思), Ting Lin(林霆), Hai-Ou Li(李海欧), Gang Cao(曹刚), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2021, 30(4): 048507.
[5] Characterization of barrier-tunable radio-frequency-SQUID for Maxwell's demon experiment
Gang Li(李刚), Suman Dhamala, Hao Li(李浩), Jian-She Liu(刘建设), Wei Chen(陈炜). Chin. Phys. B, 2018, 27(6): 068501.
[6] Optimization of pick-up coils for weakly damped SQUID gradiometers
Kang Yang(杨康), Jialei Wang(王佳磊), Xiangyan Kong(孔祥燕), Ruihu Yang(杨瑞虎), Hua Chen(陈桦). Chin. Phys. B, 2018, 27(5): 050701.
[7] Quantum information processing with nitrogen-vacancy centers in diamond
Gang-Qin Liu(刘刚钦), Xin-Yu Pan(潘新宇). Chin. Phys. B, 2018, 27(2): 020304.
[8] Modulation depth of series SQUIDs modified by Josephson junction area
Jie Liu(刘杰), He Gao(高鹤), Gang Li(李刚), Zheng Wei Li(李正伟), Kamal Ahmada, Zhang Ying Shan(张颖珊), Jian She Liu(刘建设), Wei Chen(陈炜). Chin. Phys. B, 2017, 26(9): 098501.
[9] Macroscopic resonant tunneling in an rf-SQUID flux qubit under a single-cycle sinusoidal driving
Jianxin Shi(史建新), Weiwei Xu(许伟伟), Guozhu Sun(孙国柱), Jian Chen(陈健), Lin Kang(康琳), Peiheng Wu(吴培亨). Chin. Phys. B, 2017, 26(4): 047402.
[10] An efficient calibration method for SQUID measurement system using three orthogonal Helmholtz coils
Hua Li(李华), Shu-Lin Zhang(张树林), Chao-Xiang Zhang(张朝祥), Xiang-Yan Kong(孔祥燕), Xiao-Ming Xie(谢晓明). Chin. Phys. B, 2016, 25(6): 068501.
[11] Retrieval of original signals for superconducting quantum interference device operating in flux locked mode
Liu Dang-Ting (刘当婷), Tian Ye (田野), Zhao Shi-Ping (赵士平), Ren Yu-Feng (任育峰), Chen Geng-Hua (陈赓华). Chin. Phys. B, 2015, 24(4): 047402.
[12] Baseline optimization of SQUID gradiometer for magnetocardiography
Li Hua (李华), Zhang Shu-Lin (张树林), Qiu Yang (邱阳), Zhang Yong-Sheng (张永升), Zhang Chao-Xiang (张朝祥), Kong Xiang-Yan (孔祥燕), Xie Xiao-Ming (谢晓明). Chin. Phys. B, 2015, 24(2): 028501.
[13] Fabrication and properties of high performance YBa2Cu3O7-δ radio frequency SQUIDs with step-edge Josephson junctions
Liu Zheng-Hao (刘政豪), Wei Yu-Ke (魏玉科), Wang Da (王达), Zhang Chen (张琛), Ma Ping (马平), Wang Yue (王越). Chin. Phys. B, 2014, 23(9): 097401.
[14] A SQUID gradiometer module with large junction shunt resistors
Qiu Yang (邱阳), Liu Chao (刘超), Zhang Shu-Lin (张树林), Zhang Guo-Feng (张国峰), Wang Yong-Liang (王永良), Li Hua (李华), Zeng Jia (曾佳), Kong Xiang-Yan (孔祥燕), Xie Xiao-Ming (谢晓明). Chin. Phys. B, 2014, 23(8): 088503.
[15] Superconducting quantum interference devices with different damped junctions operated in directly coupled current- and voltage-bias modes
Zeng Jia (曾佳), Zhang Yi (张懿), Qiu Yang (邱阳), Zhang Guo-Feng (张国峰), Wang Yong-Liang (王永良), Kong Xiang-Yan (孔祥燕), Xie Xiao-Ming (谢晓明). Chin. Phys. B, 2014, 23(11): 118501.
No Suggested Reading articles found!